This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kmlem5 | ⊢ ( ( 𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤 ) → ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ ( 𝑤 ∖ ∪ ( 𝑥 ∖ { 𝑤 } ) ) ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss | ⊢ ( 𝑤 ∖ ∪ ( 𝑥 ∖ { 𝑤 } ) ) ⊆ 𝑤 | |
| 2 | sslin | ⊢ ( ( 𝑤 ∖ ∪ ( 𝑥 ∖ { 𝑤 } ) ) ⊆ 𝑤 → ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ ( 𝑤 ∖ ∪ ( 𝑥 ∖ { 𝑤 } ) ) ) ⊆ ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑤 ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ ( 𝑤 ∖ ∪ ( 𝑥 ∖ { 𝑤 } ) ) ) ⊆ ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑤 ) |
| 4 | kmlem4 | ⊢ ( ( 𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤 ) → ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑤 ) = ∅ ) | |
| 5 | 3 4 | sseqtrid | ⊢ ( ( 𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤 ) → ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ ( 𝑤 ∖ ∪ ( 𝑥 ∖ { 𝑤 } ) ) ) ⊆ ∅ ) |
| 6 | ss0b | ⊢ ( ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ ( 𝑤 ∖ ∪ ( 𝑥 ∖ { 𝑤 } ) ) ) ⊆ ∅ ↔ ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ ( 𝑤 ∖ ∪ ( 𝑥 ∖ { 𝑤 } ) ) ) = ∅ ) | |
| 7 | 5 6 | sylib | ⊢ ( ( 𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤 ) → ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ ( 𝑤 ∖ ∪ ( 𝑥 ∖ { 𝑤 } ) ) ) = ∅ ) |