This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 26-Mar-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | kmlem9.1 | ⊢ 𝐴 = { 𝑢 ∣ ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) } | |
| Assertion | kmlem11 | ⊢ ( 𝑧 ∈ 𝑥 → ( 𝑧 ∩ ∪ 𝐴 ) = ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kmlem9.1 | ⊢ 𝐴 = { 𝑢 ∣ ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) } | |
| 2 | 1 | unieqi | ⊢ ∪ 𝐴 = ∪ { 𝑢 ∣ ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) } |
| 3 | vex | ⊢ 𝑡 ∈ V | |
| 4 | 3 | difexi | ⊢ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∈ V |
| 5 | 4 | dfiun2 | ⊢ ∪ 𝑡 ∈ 𝑥 ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) = ∪ { 𝑢 ∣ ∃ 𝑡 ∈ 𝑥 𝑢 = ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) } |
| 6 | 2 5 | eqtr4i | ⊢ ∪ 𝐴 = ∪ 𝑡 ∈ 𝑥 ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) |
| 7 | 6 | ineq2i | ⊢ ( 𝑧 ∩ ∪ 𝐴 ) = ( 𝑧 ∩ ∪ 𝑡 ∈ 𝑥 ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) |
| 8 | iunin2 | ⊢ ∪ 𝑡 ∈ 𝑥 ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) = ( 𝑧 ∩ ∪ 𝑡 ∈ 𝑥 ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) | |
| 9 | 7 8 | eqtr4i | ⊢ ( 𝑧 ∩ ∪ 𝐴 ) = ∪ 𝑡 ∈ 𝑥 ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) |
| 10 | undif2 | ⊢ ( { 𝑧 } ∪ ( 𝑥 ∖ { 𝑧 } ) ) = ( { 𝑧 } ∪ 𝑥 ) | |
| 11 | snssi | ⊢ ( 𝑧 ∈ 𝑥 → { 𝑧 } ⊆ 𝑥 ) | |
| 12 | ssequn1 | ⊢ ( { 𝑧 } ⊆ 𝑥 ↔ ( { 𝑧 } ∪ 𝑥 ) = 𝑥 ) | |
| 13 | 11 12 | sylib | ⊢ ( 𝑧 ∈ 𝑥 → ( { 𝑧 } ∪ 𝑥 ) = 𝑥 ) |
| 14 | 10 13 | eqtr2id | ⊢ ( 𝑧 ∈ 𝑥 → 𝑥 = ( { 𝑧 } ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) |
| 15 | 14 | iuneq1d | ⊢ ( 𝑧 ∈ 𝑥 → ∪ 𝑡 ∈ 𝑥 ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) = ∪ 𝑡 ∈ ( { 𝑧 } ∪ ( 𝑥 ∖ { 𝑧 } ) ) ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) ) |
| 16 | iunxun | ⊢ ∪ 𝑡 ∈ ( { 𝑧 } ∪ ( 𝑥 ∖ { 𝑧 } ) ) ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) = ( ∪ 𝑡 ∈ { 𝑧 } ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) ∪ ∪ 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) ) | |
| 17 | vex | ⊢ 𝑧 ∈ V | |
| 18 | difeq1 | ⊢ ( 𝑡 = 𝑧 → ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) = ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) | |
| 19 | sneq | ⊢ ( 𝑡 = 𝑧 → { 𝑡 } = { 𝑧 } ) | |
| 20 | 19 | difeq2d | ⊢ ( 𝑡 = 𝑧 → ( 𝑥 ∖ { 𝑡 } ) = ( 𝑥 ∖ { 𝑧 } ) ) |
| 21 | 20 | unieqd | ⊢ ( 𝑡 = 𝑧 → ∪ ( 𝑥 ∖ { 𝑡 } ) = ∪ ( 𝑥 ∖ { 𝑧 } ) ) |
| 22 | 21 | difeq2d | ⊢ ( 𝑡 = 𝑧 → ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) = ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) |
| 23 | 18 22 | eqtrd | ⊢ ( 𝑡 = 𝑧 → ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) = ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) |
| 24 | 23 | ineq2d | ⊢ ( 𝑡 = 𝑧 → ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) = ( 𝑧 ∩ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) ) |
| 25 | 17 24 | iunxsn | ⊢ ∪ 𝑡 ∈ { 𝑧 } ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) = ( 𝑧 ∩ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) |
| 26 | 25 | uneq1i | ⊢ ( ∪ 𝑡 ∈ { 𝑧 } ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) ∪ ∪ 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) ) = ( ( 𝑧 ∩ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) ∪ ∪ 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) ) |
| 27 | 16 26 | eqtri | ⊢ ∪ 𝑡 ∈ ( { 𝑧 } ∪ ( 𝑥 ∖ { 𝑧 } ) ) ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) = ( ( 𝑧 ∩ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) ∪ ∪ 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) ) |
| 28 | eldifsni | ⊢ ( 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) → 𝑡 ≠ 𝑧 ) | |
| 29 | incom | ⊢ ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) = ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑧 ) | |
| 30 | kmlem4 | ⊢ ( ( 𝑧 ∈ 𝑥 ∧ 𝑡 ≠ 𝑧 ) → ( ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ∩ 𝑧 ) = ∅ ) | |
| 31 | 29 30 | eqtrid | ⊢ ( ( 𝑧 ∈ 𝑥 ∧ 𝑡 ≠ 𝑧 ) → ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) = ∅ ) |
| 32 | 31 | ex | ⊢ ( 𝑧 ∈ 𝑥 → ( 𝑡 ≠ 𝑧 → ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) = ∅ ) ) |
| 33 | 28 32 | syl5 | ⊢ ( 𝑧 ∈ 𝑥 → ( 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) → ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) = ∅ ) ) |
| 34 | 33 | ralrimiv | ⊢ ( 𝑧 ∈ 𝑥 → ∀ 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) = ∅ ) |
| 35 | iuneq2 | ⊢ ( ∀ 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) = ∅ → ∪ 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) = ∪ 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ∅ ) | |
| 36 | 34 35 | syl | ⊢ ( 𝑧 ∈ 𝑥 → ∪ 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) = ∪ 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ∅ ) |
| 37 | iun0 | ⊢ ∪ 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ∅ = ∅ | |
| 38 | 36 37 | eqtrdi | ⊢ ( 𝑧 ∈ 𝑥 → ∪ 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) = ∅ ) |
| 39 | 38 | uneq2d | ⊢ ( 𝑧 ∈ 𝑥 → ( ( 𝑧 ∩ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) ∪ ∪ 𝑡 ∈ ( 𝑥 ∖ { 𝑧 } ) ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) ) = ( ( 𝑧 ∩ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) ∪ ∅ ) ) |
| 40 | 27 39 | eqtrid | ⊢ ( 𝑧 ∈ 𝑥 → ∪ 𝑡 ∈ ( { 𝑧 } ∪ ( 𝑥 ∖ { 𝑧 } ) ) ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) = ( ( 𝑧 ∩ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) ∪ ∅ ) ) |
| 41 | 15 40 | eqtrd | ⊢ ( 𝑧 ∈ 𝑥 → ∪ 𝑡 ∈ 𝑥 ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) = ( ( 𝑧 ∩ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) ∪ ∅ ) ) |
| 42 | un0 | ⊢ ( ( 𝑧 ∩ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) ∪ ∅ ) = ( 𝑧 ∩ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) | |
| 43 | indif | ⊢ ( 𝑧 ∩ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) = ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) | |
| 44 | 42 43 | eqtri | ⊢ ( ( 𝑧 ∩ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) ∪ ∅ ) = ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) |
| 45 | 41 44 | eqtrdi | ⊢ ( 𝑧 ∈ 𝑥 → ∪ 𝑡 ∈ 𝑥 ( 𝑧 ∩ ( 𝑡 ∖ ∪ ( 𝑥 ∖ { 𝑡 } ) ) ) = ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) |
| 46 | 9 45 | eqtrid | ⊢ ( 𝑧 ∈ 𝑥 → ( 𝑧 ∩ ∪ 𝐴 ) = ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) |