This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The compact generator topology has the same compact sets as the original topology. (Contributed by Mario Carneiro, 20-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kgencmp2 | ⊢ ( 𝐽 ∈ Top → ( ( 𝐽 ↾t 𝐾 ) ∈ Comp ↔ ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ∈ Comp ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kgencmp | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) → ( 𝐽 ↾t 𝐾 ) = ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ) | |
| 2 | simpr | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) → ( 𝐽 ↾t 𝐾 ) ∈ Comp ) | |
| 3 | 1 2 | eqeltrrd | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) → ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ∈ Comp ) |
| 4 | cmptop | ⊢ ( ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ∈ Comp → ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ∈ Top ) | |
| 5 | restrcl | ⊢ ( ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ∈ Top → ( ( 𝑘Gen ‘ 𝐽 ) ∈ V ∧ 𝐾 ∈ V ) ) | |
| 6 | 5 | simprd | ⊢ ( ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ∈ Top → 𝐾 ∈ V ) |
| 7 | 4 6 | syl | ⊢ ( ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ∈ Comp → 𝐾 ∈ V ) |
| 8 | resttop | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ V ) → ( 𝐽 ↾t 𝐾 ) ∈ Top ) | |
| 9 | 7 8 | sylan2 | ⊢ ( ( 𝐽 ∈ Top ∧ ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ∈ Comp ) → ( 𝐽 ↾t 𝐾 ) ∈ Top ) |
| 10 | toptopon2 | ⊢ ( ( 𝐽 ↾t 𝐾 ) ∈ Top ↔ ( 𝐽 ↾t 𝐾 ) ∈ ( TopOn ‘ ∪ ( 𝐽 ↾t 𝐾 ) ) ) | |
| 11 | 9 10 | sylib | ⊢ ( ( 𝐽 ∈ Top ∧ ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ∈ Comp ) → ( 𝐽 ↾t 𝐾 ) ∈ ( TopOn ‘ ∪ ( 𝐽 ↾t 𝐾 ) ) ) |
| 12 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 13 | 12 | kgenuni | ⊢ ( 𝐽 ∈ Top → ∪ 𝐽 = ∪ ( 𝑘Gen ‘ 𝐽 ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝐽 ∈ Top ∧ ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ∈ Comp ) → ∪ 𝐽 = ∪ ( 𝑘Gen ‘ 𝐽 ) ) |
| 15 | 14 | ineq2d | ⊢ ( ( 𝐽 ∈ Top ∧ ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ∈ Comp ) → ( 𝐾 ∩ ∪ 𝐽 ) = ( 𝐾 ∩ ∪ ( 𝑘Gen ‘ 𝐽 ) ) ) |
| 16 | 12 | restuni2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ V ) → ( 𝐾 ∩ ∪ 𝐽 ) = ∪ ( 𝐽 ↾t 𝐾 ) ) |
| 17 | 7 16 | sylan2 | ⊢ ( ( 𝐽 ∈ Top ∧ ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ∈ Comp ) → ( 𝐾 ∩ ∪ 𝐽 ) = ∪ ( 𝐽 ↾t 𝐾 ) ) |
| 18 | kgenftop | ⊢ ( 𝐽 ∈ Top → ( 𝑘Gen ‘ 𝐽 ) ∈ Top ) | |
| 19 | eqid | ⊢ ∪ ( 𝑘Gen ‘ 𝐽 ) = ∪ ( 𝑘Gen ‘ 𝐽 ) | |
| 20 | 19 | restuni2 | ⊢ ( ( ( 𝑘Gen ‘ 𝐽 ) ∈ Top ∧ 𝐾 ∈ V ) → ( 𝐾 ∩ ∪ ( 𝑘Gen ‘ 𝐽 ) ) = ∪ ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ) |
| 21 | 18 7 20 | syl2an | ⊢ ( ( 𝐽 ∈ Top ∧ ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ∈ Comp ) → ( 𝐾 ∩ ∪ ( 𝑘Gen ‘ 𝐽 ) ) = ∪ ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ) |
| 22 | 15 17 21 | 3eqtr3d | ⊢ ( ( 𝐽 ∈ Top ∧ ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ∈ Comp ) → ∪ ( 𝐽 ↾t 𝐾 ) = ∪ ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ) |
| 23 | 22 | fveq2d | ⊢ ( ( 𝐽 ∈ Top ∧ ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ∈ Comp ) → ( TopOn ‘ ∪ ( 𝐽 ↾t 𝐾 ) ) = ( TopOn ‘ ∪ ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ) ) |
| 24 | 11 23 | eleqtrd | ⊢ ( ( 𝐽 ∈ Top ∧ ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ∈ Comp ) → ( 𝐽 ↾t 𝐾 ) ∈ ( TopOn ‘ ∪ ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ) ) |
| 25 | simpr | ⊢ ( ( 𝐽 ∈ Top ∧ ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ∈ Comp ) → ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ∈ Comp ) | |
| 26 | kgenss | ⊢ ( 𝐽 ∈ Top → 𝐽 ⊆ ( 𝑘Gen ‘ 𝐽 ) ) | |
| 27 | 26 | adantr | ⊢ ( ( 𝐽 ∈ Top ∧ ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ∈ Comp ) → 𝐽 ⊆ ( 𝑘Gen ‘ 𝐽 ) ) |
| 28 | ssrest | ⊢ ( ( ( 𝑘Gen ‘ 𝐽 ) ∈ Top ∧ 𝐽 ⊆ ( 𝑘Gen ‘ 𝐽 ) ) → ( 𝐽 ↾t 𝐾 ) ⊆ ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ) | |
| 29 | 18 27 28 | syl2an2r | ⊢ ( ( 𝐽 ∈ Top ∧ ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ∈ Comp ) → ( 𝐽 ↾t 𝐾 ) ⊆ ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ) |
| 30 | eqid | ⊢ ∪ ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) = ∪ ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) | |
| 31 | 30 | sscmp | ⊢ ( ( ( 𝐽 ↾t 𝐾 ) ∈ ( TopOn ‘ ∪ ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ) ∧ ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ∈ Comp ∧ ( 𝐽 ↾t 𝐾 ) ⊆ ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ) → ( 𝐽 ↾t 𝐾 ) ∈ Comp ) |
| 32 | 24 25 29 31 | syl3anc | ⊢ ( ( 𝐽 ∈ Top ∧ ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ∈ Comp ) → ( 𝐽 ↾t 𝐾 ) ∈ Comp ) |
| 33 | 3 32 | impbida | ⊢ ( 𝐽 ∈ Top → ( ( 𝐽 ↾t 𝐾 ) ∈ Comp ↔ ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ∈ Comp ) ) |