This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The compact generator topology is the same as the original topology on compact subspaces. (Contributed by Mario Carneiro, 20-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kgencmp | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) → ( 𝐽 ↾t 𝐾 ) = ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kgenftop | ⊢ ( 𝐽 ∈ Top → ( 𝑘Gen ‘ 𝐽 ) ∈ Top ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) → ( 𝑘Gen ‘ 𝐽 ) ∈ Top ) |
| 3 | kgenss | ⊢ ( 𝐽 ∈ Top → 𝐽 ⊆ ( 𝑘Gen ‘ 𝐽 ) ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) → 𝐽 ⊆ ( 𝑘Gen ‘ 𝐽 ) ) |
| 5 | ssrest | ⊢ ( ( ( 𝑘Gen ‘ 𝐽 ) ∈ Top ∧ 𝐽 ⊆ ( 𝑘Gen ‘ 𝐽 ) ) → ( 𝐽 ↾t 𝐾 ) ⊆ ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ) | |
| 6 | 2 4 5 | syl2anc | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) → ( 𝐽 ↾t 𝐾 ) ⊆ ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ) |
| 7 | cmptop | ⊢ ( ( 𝐽 ↾t 𝐾 ) ∈ Comp → ( 𝐽 ↾t 𝐾 ) ∈ Top ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) → ( 𝐽 ↾t 𝐾 ) ∈ Top ) |
| 9 | restrcl | ⊢ ( ( 𝐽 ↾t 𝐾 ) ∈ Top → ( 𝐽 ∈ V ∧ 𝐾 ∈ V ) ) | |
| 10 | 9 | simprd | ⊢ ( ( 𝐽 ↾t 𝐾 ) ∈ Top → 𝐾 ∈ V ) |
| 11 | 8 10 | syl | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) → 𝐾 ∈ V ) |
| 12 | restval | ⊢ ( ( ( 𝑘Gen ‘ 𝐽 ) ∈ Top ∧ 𝐾 ∈ V ) → ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) = ran ( 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ↦ ( 𝑥 ∩ 𝐾 ) ) ) | |
| 13 | 2 11 12 | syl2anc | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) → ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) = ran ( 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ↦ ( 𝑥 ∩ 𝐾 ) ) ) |
| 14 | simpr | ⊢ ( ( ( 𝐽 ∈ Top ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) | |
| 15 | simplr | ⊢ ( ( ( 𝐽 ∈ Top ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → ( 𝐽 ↾t 𝐾 ) ∈ Comp ) | |
| 16 | kgeni | ⊢ ( ( 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) → ( 𝑥 ∩ 𝐾 ) ∈ ( 𝐽 ↾t 𝐾 ) ) | |
| 17 | 14 15 16 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → ( 𝑥 ∩ 𝐾 ) ∈ ( 𝐽 ↾t 𝐾 ) ) |
| 18 | 17 | fmpttd | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) → ( 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ↦ ( 𝑥 ∩ 𝐾 ) ) : ( 𝑘Gen ‘ 𝐽 ) ⟶ ( 𝐽 ↾t 𝐾 ) ) |
| 19 | 18 | frnd | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) → ran ( 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ↦ ( 𝑥 ∩ 𝐾 ) ) ⊆ ( 𝐽 ↾t 𝐾 ) ) |
| 20 | 13 19 | eqsstrd | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) → ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ⊆ ( 𝐽 ↾t 𝐾 ) ) |
| 21 | 6 20 | eqssd | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐽 ↾t 𝐾 ) ∈ Comp ) → ( 𝐽 ↾t 𝐾 ) = ( ( 𝑘Gen ‘ 𝐽 ) ↾t 𝐾 ) ) |