This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Dirac bra-ket associative law ( | A >. <. B | ) ( | C >. <. D | ) = | A >. ( <. B | ( | C >. <. D | ) ) . (Contributed by NM, 30-May-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kbass6 | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 ketbra 𝐵 ) ∘ ( 𝐶 ketbra 𝐷 ) ) = ( 𝐴 ketbra ( ◡ bra ‘ ( ( bra ‘ 𝐵 ) ∘ ( 𝐶 ketbra 𝐷 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kbass5 | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 ketbra 𝐵 ) ∘ ( 𝐶 ketbra 𝐷 ) ) = ( ( ( 𝐴 ketbra 𝐵 ) ‘ 𝐶 ) ketbra 𝐷 ) ) | |
| 2 | kbval | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ketbra 𝐵 ) ‘ 𝐶 ) = ( ( 𝐶 ·ih 𝐵 ) ·ℎ 𝐴 ) ) | |
| 3 | 2 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ketbra 𝐵 ) ‘ 𝐶 ) = ( ( 𝐶 ·ih 𝐵 ) ·ℎ 𝐴 ) ) |
| 4 | 3 | adantrr | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 ketbra 𝐵 ) ‘ 𝐶 ) = ( ( 𝐶 ·ih 𝐵 ) ·ℎ 𝐴 ) ) |
| 5 | 4 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ( 𝐴 ketbra 𝐵 ) ‘ 𝐶 ) ketbra 𝐷 ) = ( ( ( 𝐶 ·ih 𝐵 ) ·ℎ 𝐴 ) ketbra 𝐷 ) ) |
| 6 | hicl | ⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐶 ·ih 𝐵 ) ∈ ℂ ) | |
| 7 | kbmul | ⊢ ( ( ( 𝐶 ·ih 𝐵 ) ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐷 ∈ ℋ ) → ( ( ( 𝐶 ·ih 𝐵 ) ·ℎ 𝐴 ) ketbra 𝐷 ) = ( 𝐴 ketbra ( ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ·ℎ 𝐷 ) ) ) | |
| 8 | 6 7 | syl3an1 | ⊢ ( ( ( 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ 𝐴 ∈ ℋ ∧ 𝐷 ∈ ℋ ) → ( ( ( 𝐶 ·ih 𝐵 ) ·ℎ 𝐴 ) ketbra 𝐷 ) = ( 𝐴 ketbra ( ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ·ℎ 𝐷 ) ) ) |
| 9 | 8 | 3exp | ⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ∈ ℋ → ( 𝐷 ∈ ℋ → ( ( ( 𝐶 ·ih 𝐵 ) ·ℎ 𝐴 ) ketbra 𝐷 ) = ( 𝐴 ketbra ( ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ·ℎ 𝐷 ) ) ) ) ) |
| 10 | 9 | ex | ⊢ ( 𝐶 ∈ ℋ → ( 𝐵 ∈ ℋ → ( 𝐴 ∈ ℋ → ( 𝐷 ∈ ℋ → ( ( ( 𝐶 ·ih 𝐵 ) ·ℎ 𝐴 ) ketbra 𝐷 ) = ( 𝐴 ketbra ( ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ·ℎ 𝐷 ) ) ) ) ) ) |
| 11 | 10 | com13 | ⊢ ( 𝐴 ∈ ℋ → ( 𝐵 ∈ ℋ → ( 𝐶 ∈ ℋ → ( 𝐷 ∈ ℋ → ( ( ( 𝐶 ·ih 𝐵 ) ·ℎ 𝐴 ) ketbra 𝐷 ) = ( 𝐴 ketbra ( ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ·ℎ 𝐷 ) ) ) ) ) ) |
| 12 | 11 | imp43 | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ( 𝐶 ·ih 𝐵 ) ·ℎ 𝐴 ) ketbra 𝐷 ) = ( 𝐴 ketbra ( ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ·ℎ 𝐷 ) ) ) |
| 13 | bracl | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( bra ‘ 𝐵 ) ‘ 𝐶 ) ∈ ℂ ) | |
| 14 | bracnln | ⊢ ( 𝐷 ∈ ℋ → ( bra ‘ 𝐷 ) ∈ ( LinFn ∩ ContFn ) ) | |
| 15 | cnvbramul | ⊢ ( ( ( ( bra ‘ 𝐵 ) ‘ 𝐶 ) ∈ ℂ ∧ ( bra ‘ 𝐷 ) ∈ ( LinFn ∩ ContFn ) ) → ( ◡ bra ‘ ( ( ( bra ‘ 𝐵 ) ‘ 𝐶 ) ·fn ( bra ‘ 𝐷 ) ) ) = ( ( ∗ ‘ ( ( bra ‘ 𝐵 ) ‘ 𝐶 ) ) ·ℎ ( ◡ bra ‘ ( bra ‘ 𝐷 ) ) ) ) | |
| 16 | 13 14 15 | syl2an | ⊢ ( ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝐷 ∈ ℋ ) → ( ◡ bra ‘ ( ( ( bra ‘ 𝐵 ) ‘ 𝐶 ) ·fn ( bra ‘ 𝐷 ) ) ) = ( ( ∗ ‘ ( ( bra ‘ 𝐵 ) ‘ 𝐶 ) ) ·ℎ ( ◡ bra ‘ ( bra ‘ 𝐷 ) ) ) ) |
| 17 | braval | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( bra ‘ 𝐵 ) ‘ 𝐶 ) = ( 𝐶 ·ih 𝐵 ) ) | |
| 18 | 17 | fveq2d | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ∗ ‘ ( ( bra ‘ 𝐵 ) ‘ 𝐶 ) ) = ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ) |
| 19 | cnvbrabra | ⊢ ( 𝐷 ∈ ℋ → ( ◡ bra ‘ ( bra ‘ 𝐷 ) ) = 𝐷 ) | |
| 20 | 18 19 | oveqan12d | ⊢ ( ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝐷 ∈ ℋ ) → ( ( ∗ ‘ ( ( bra ‘ 𝐵 ) ‘ 𝐶 ) ) ·ℎ ( ◡ bra ‘ ( bra ‘ 𝐷 ) ) ) = ( ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ·ℎ 𝐷 ) ) |
| 21 | 16 20 | eqtr2d | ⊢ ( ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝐷 ∈ ℋ ) → ( ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ·ℎ 𝐷 ) = ( ◡ bra ‘ ( ( ( bra ‘ 𝐵 ) ‘ 𝐶 ) ·fn ( bra ‘ 𝐷 ) ) ) ) |
| 22 | 21 | anasss | ⊢ ( ( 𝐵 ∈ ℋ ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ·ℎ 𝐷 ) = ( ◡ bra ‘ ( ( ( bra ‘ 𝐵 ) ‘ 𝐶 ) ·fn ( bra ‘ 𝐷 ) ) ) ) |
| 23 | kbass2 | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) → ( ( ( bra ‘ 𝐵 ) ‘ 𝐶 ) ·fn ( bra ‘ 𝐷 ) ) = ( ( bra ‘ 𝐵 ) ∘ ( 𝐶 ketbra 𝐷 ) ) ) | |
| 24 | 23 | 3expb | ⊢ ( ( 𝐵 ∈ ℋ ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ( bra ‘ 𝐵 ) ‘ 𝐶 ) ·fn ( bra ‘ 𝐷 ) ) = ( ( bra ‘ 𝐵 ) ∘ ( 𝐶 ketbra 𝐷 ) ) ) |
| 25 | 24 | fveq2d | ⊢ ( ( 𝐵 ∈ ℋ ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ◡ bra ‘ ( ( ( bra ‘ 𝐵 ) ‘ 𝐶 ) ·fn ( bra ‘ 𝐷 ) ) ) = ( ◡ bra ‘ ( ( bra ‘ 𝐵 ) ∘ ( 𝐶 ketbra 𝐷 ) ) ) ) |
| 26 | 22 25 | eqtr2d | ⊢ ( ( 𝐵 ∈ ℋ ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ◡ bra ‘ ( ( bra ‘ 𝐵 ) ∘ ( 𝐶 ketbra 𝐷 ) ) ) = ( ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ·ℎ 𝐷 ) ) |
| 27 | 26 | adantll | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ◡ bra ‘ ( ( bra ‘ 𝐵 ) ∘ ( 𝐶 ketbra 𝐷 ) ) ) = ( ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ·ℎ 𝐷 ) ) |
| 28 | 27 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( 𝐴 ketbra ( ◡ bra ‘ ( ( bra ‘ 𝐵 ) ∘ ( 𝐶 ketbra 𝐷 ) ) ) ) = ( 𝐴 ketbra ( ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ·ℎ 𝐷 ) ) ) |
| 29 | 12 28 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ( 𝐶 ·ih 𝐵 ) ·ℎ 𝐴 ) ketbra 𝐷 ) = ( 𝐴 ketbra ( ◡ bra ‘ ( ( bra ‘ 𝐵 ) ∘ ( 𝐶 ketbra 𝐷 ) ) ) ) ) |
| 30 | 1 5 29 | 3eqtrd | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 ketbra 𝐵 ) ∘ ( 𝐶 ketbra 𝐷 ) ) = ( 𝐴 ketbra ( ◡ bra ‘ ( ( bra ‘ 𝐵 ) ∘ ( 𝐶 ketbra 𝐷 ) ) ) ) ) |