This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the operator resulting from the outer product | A >. <. B | of two vectors. Equation 8.1 of Prugovecki p. 376. (Contributed by NM, 15-May-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kbval | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ketbra 𝐵 ) ‘ 𝐶 ) = ( ( 𝐶 ·ih 𝐵 ) ·ℎ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kbfval | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ketbra 𝐵 ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑥 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ) | |
| 2 | 1 | fveq1d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ketbra 𝐵 ) ‘ 𝐶 ) = ( ( 𝑥 ∈ ℋ ↦ ( ( 𝑥 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ‘ 𝐶 ) ) |
| 3 | oveq1 | ⊢ ( 𝑥 = 𝐶 → ( 𝑥 ·ih 𝐵 ) = ( 𝐶 ·ih 𝐵 ) ) | |
| 4 | 3 | oveq1d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝑥 ·ih 𝐵 ) ·ℎ 𝐴 ) = ( ( 𝐶 ·ih 𝐵 ) ·ℎ 𝐴 ) ) |
| 5 | eqid | ⊢ ( 𝑥 ∈ ℋ ↦ ( ( 𝑥 ·ih 𝐵 ) ·ℎ 𝐴 ) ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑥 ·ih 𝐵 ) ·ℎ 𝐴 ) ) | |
| 6 | ovex | ⊢ ( ( 𝐶 ·ih 𝐵 ) ·ℎ 𝐴 ) ∈ V | |
| 7 | 4 5 6 | fvmpt | ⊢ ( 𝐶 ∈ ℋ → ( ( 𝑥 ∈ ℋ ↦ ( ( 𝑥 ·ih 𝐵 ) ·ℎ 𝐴 ) ) ‘ 𝐶 ) = ( ( 𝐶 ·ih 𝐵 ) ·ℎ 𝐴 ) ) |
| 8 | 2 7 | sylan9eq | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ketbra 𝐵 ) ‘ 𝐶 ) = ( ( 𝐶 ·ih 𝐵 ) ·ℎ 𝐴 ) ) |
| 9 | 8 | 3impa | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ketbra 𝐵 ) ‘ 𝐶 ) = ( ( 𝐶 ·ih 𝐵 ) ·ℎ 𝐴 ) ) |