This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Dirac bra-ket associative law ( | A >. <. B | ) ( | C >. <. D | ) = | A >. ( <. B | ( | C >. <. D | ) ) . (Contributed by NM, 30-May-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kbass6 | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( A ketbra B ) o. ( C ketbra D ) ) = ( A ketbra ( `' bra ` ( ( bra ` B ) o. ( C ketbra D ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kbass5 | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( A ketbra B ) o. ( C ketbra D ) ) = ( ( ( A ketbra B ) ` C ) ketbra D ) ) |
|
| 2 | kbval | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A ketbra B ) ` C ) = ( ( C .ih B ) .h A ) ) |
|
| 3 | 2 | 3expa | |- ( ( ( A e. ~H /\ B e. ~H ) /\ C e. ~H ) -> ( ( A ketbra B ) ` C ) = ( ( C .ih B ) .h A ) ) |
| 4 | 3 | adantrr | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( A ketbra B ) ` C ) = ( ( C .ih B ) .h A ) ) |
| 5 | 4 | oveq1d | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( ( A ketbra B ) ` C ) ketbra D ) = ( ( ( C .ih B ) .h A ) ketbra D ) ) |
| 6 | hicl | |- ( ( C e. ~H /\ B e. ~H ) -> ( C .ih B ) e. CC ) |
|
| 7 | kbmul | |- ( ( ( C .ih B ) e. CC /\ A e. ~H /\ D e. ~H ) -> ( ( ( C .ih B ) .h A ) ketbra D ) = ( A ketbra ( ( * ` ( C .ih B ) ) .h D ) ) ) |
|
| 8 | 6 7 | syl3an1 | |- ( ( ( C e. ~H /\ B e. ~H ) /\ A e. ~H /\ D e. ~H ) -> ( ( ( C .ih B ) .h A ) ketbra D ) = ( A ketbra ( ( * ` ( C .ih B ) ) .h D ) ) ) |
| 9 | 8 | 3exp | |- ( ( C e. ~H /\ B e. ~H ) -> ( A e. ~H -> ( D e. ~H -> ( ( ( C .ih B ) .h A ) ketbra D ) = ( A ketbra ( ( * ` ( C .ih B ) ) .h D ) ) ) ) ) |
| 10 | 9 | ex | |- ( C e. ~H -> ( B e. ~H -> ( A e. ~H -> ( D e. ~H -> ( ( ( C .ih B ) .h A ) ketbra D ) = ( A ketbra ( ( * ` ( C .ih B ) ) .h D ) ) ) ) ) ) |
| 11 | 10 | com13 | |- ( A e. ~H -> ( B e. ~H -> ( C e. ~H -> ( D e. ~H -> ( ( ( C .ih B ) .h A ) ketbra D ) = ( A ketbra ( ( * ` ( C .ih B ) ) .h D ) ) ) ) ) ) |
| 12 | 11 | imp43 | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( ( C .ih B ) .h A ) ketbra D ) = ( A ketbra ( ( * ` ( C .ih B ) ) .h D ) ) ) |
| 13 | bracl | |- ( ( B e. ~H /\ C e. ~H ) -> ( ( bra ` B ) ` C ) e. CC ) |
|
| 14 | bracnln | |- ( D e. ~H -> ( bra ` D ) e. ( LinFn i^i ContFn ) ) |
|
| 15 | cnvbramul | |- ( ( ( ( bra ` B ) ` C ) e. CC /\ ( bra ` D ) e. ( LinFn i^i ContFn ) ) -> ( `' bra ` ( ( ( bra ` B ) ` C ) .fn ( bra ` D ) ) ) = ( ( * ` ( ( bra ` B ) ` C ) ) .h ( `' bra ` ( bra ` D ) ) ) ) |
|
| 16 | 13 14 15 | syl2an | |- ( ( ( B e. ~H /\ C e. ~H ) /\ D e. ~H ) -> ( `' bra ` ( ( ( bra ` B ) ` C ) .fn ( bra ` D ) ) ) = ( ( * ` ( ( bra ` B ) ` C ) ) .h ( `' bra ` ( bra ` D ) ) ) ) |
| 17 | braval | |- ( ( B e. ~H /\ C e. ~H ) -> ( ( bra ` B ) ` C ) = ( C .ih B ) ) |
|
| 18 | 17 | fveq2d | |- ( ( B e. ~H /\ C e. ~H ) -> ( * ` ( ( bra ` B ) ` C ) ) = ( * ` ( C .ih B ) ) ) |
| 19 | cnvbrabra | |- ( D e. ~H -> ( `' bra ` ( bra ` D ) ) = D ) |
|
| 20 | 18 19 | oveqan12d | |- ( ( ( B e. ~H /\ C e. ~H ) /\ D e. ~H ) -> ( ( * ` ( ( bra ` B ) ` C ) ) .h ( `' bra ` ( bra ` D ) ) ) = ( ( * ` ( C .ih B ) ) .h D ) ) |
| 21 | 16 20 | eqtr2d | |- ( ( ( B e. ~H /\ C e. ~H ) /\ D e. ~H ) -> ( ( * ` ( C .ih B ) ) .h D ) = ( `' bra ` ( ( ( bra ` B ) ` C ) .fn ( bra ` D ) ) ) ) |
| 22 | 21 | anasss | |- ( ( B e. ~H /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( * ` ( C .ih B ) ) .h D ) = ( `' bra ` ( ( ( bra ` B ) ` C ) .fn ( bra ` D ) ) ) ) |
| 23 | kbass2 | |- ( ( B e. ~H /\ C e. ~H /\ D e. ~H ) -> ( ( ( bra ` B ) ` C ) .fn ( bra ` D ) ) = ( ( bra ` B ) o. ( C ketbra D ) ) ) |
|
| 24 | 23 | 3expb | |- ( ( B e. ~H /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( ( bra ` B ) ` C ) .fn ( bra ` D ) ) = ( ( bra ` B ) o. ( C ketbra D ) ) ) |
| 25 | 24 | fveq2d | |- ( ( B e. ~H /\ ( C e. ~H /\ D e. ~H ) ) -> ( `' bra ` ( ( ( bra ` B ) ` C ) .fn ( bra ` D ) ) ) = ( `' bra ` ( ( bra ` B ) o. ( C ketbra D ) ) ) ) |
| 26 | 22 25 | eqtr2d | |- ( ( B e. ~H /\ ( C e. ~H /\ D e. ~H ) ) -> ( `' bra ` ( ( bra ` B ) o. ( C ketbra D ) ) ) = ( ( * ` ( C .ih B ) ) .h D ) ) |
| 27 | 26 | adantll | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( `' bra ` ( ( bra ` B ) o. ( C ketbra D ) ) ) = ( ( * ` ( C .ih B ) ) .h D ) ) |
| 28 | 27 | oveq2d | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( A ketbra ( `' bra ` ( ( bra ` B ) o. ( C ketbra D ) ) ) ) = ( A ketbra ( ( * ` ( C .ih B ) ) .h D ) ) ) |
| 29 | 12 28 | eqtr4d | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( ( C .ih B ) .h A ) ketbra D ) = ( A ketbra ( `' bra ` ( ( bra ` B ) o. ( C ketbra D ) ) ) ) ) |
| 30 | 1 5 29 | 3eqtrd | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( A ketbra B ) o. ( C ketbra D ) ) = ( A ketbra ( `' bra ` ( ( bra ` B ) o. ( C ketbra D ) ) ) ) ) |