This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication property of the converse bra function. (Contributed by NM, 31-May-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvbramul | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ ( LinFn ∩ ContFn ) ) → ( ◡ bra ‘ ( 𝐴 ·fn 𝑇 ) ) = ( ( ∗ ‘ 𝐴 ) ·ℎ ( ◡ bra ‘ 𝑇 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvbracl | ⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ( ◡ bra ‘ 𝑇 ) ∈ ℋ ) | |
| 2 | cjcl | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) ∈ ℂ ) | |
| 3 | brafnmul | ⊢ ( ( ( ∗ ‘ 𝐴 ) ∈ ℂ ∧ ( ◡ bra ‘ 𝑇 ) ∈ ℋ ) → ( bra ‘ ( ( ∗ ‘ 𝐴 ) ·ℎ ( ◡ bra ‘ 𝑇 ) ) ) = ( ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ·fn ( bra ‘ ( ◡ bra ‘ 𝑇 ) ) ) ) | |
| 4 | 2 3 | sylan | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ◡ bra ‘ 𝑇 ) ∈ ℋ ) → ( bra ‘ ( ( ∗ ‘ 𝐴 ) ·ℎ ( ◡ bra ‘ 𝑇 ) ) ) = ( ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ·fn ( bra ‘ ( ◡ bra ‘ 𝑇 ) ) ) ) |
| 5 | cjcj | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) = 𝐴 ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ◡ bra ‘ 𝑇 ) ∈ ℋ ) → ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) = 𝐴 ) |
| 7 | 6 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ◡ bra ‘ 𝑇 ) ∈ ℋ ) → ( ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ·fn ( bra ‘ ( ◡ bra ‘ 𝑇 ) ) ) = ( 𝐴 ·fn ( bra ‘ ( ◡ bra ‘ 𝑇 ) ) ) ) |
| 8 | 4 7 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ◡ bra ‘ 𝑇 ) ∈ ℋ ) → ( bra ‘ ( ( ∗ ‘ 𝐴 ) ·ℎ ( ◡ bra ‘ 𝑇 ) ) ) = ( 𝐴 ·fn ( bra ‘ ( ◡ bra ‘ 𝑇 ) ) ) ) |
| 9 | 1 8 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ ( LinFn ∩ ContFn ) ) → ( bra ‘ ( ( ∗ ‘ 𝐴 ) ·ℎ ( ◡ bra ‘ 𝑇 ) ) ) = ( 𝐴 ·fn ( bra ‘ ( ◡ bra ‘ 𝑇 ) ) ) ) |
| 10 | bracnvbra | ⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ( bra ‘ ( ◡ bra ‘ 𝑇 ) ) = 𝑇 ) | |
| 11 | 10 | oveq2d | ⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ( 𝐴 ·fn ( bra ‘ ( ◡ bra ‘ 𝑇 ) ) ) = ( 𝐴 ·fn 𝑇 ) ) |
| 12 | 11 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ ( LinFn ∩ ContFn ) ) → ( 𝐴 ·fn ( bra ‘ ( ◡ bra ‘ 𝑇 ) ) ) = ( 𝐴 ·fn 𝑇 ) ) |
| 13 | 9 12 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ ( LinFn ∩ ContFn ) ) → ( bra ‘ ( ( ∗ ‘ 𝐴 ) ·ℎ ( ◡ bra ‘ 𝑇 ) ) ) = ( 𝐴 ·fn 𝑇 ) ) |
| 14 | 13 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ ( LinFn ∩ ContFn ) ) → ( ◡ bra ‘ ( bra ‘ ( ( ∗ ‘ 𝐴 ) ·ℎ ( ◡ bra ‘ 𝑇 ) ) ) ) = ( ◡ bra ‘ ( 𝐴 ·fn 𝑇 ) ) ) |
| 15 | hvmulcl | ⊢ ( ( ( ∗ ‘ 𝐴 ) ∈ ℂ ∧ ( ◡ bra ‘ 𝑇 ) ∈ ℋ ) → ( ( ∗ ‘ 𝐴 ) ·ℎ ( ◡ bra ‘ 𝑇 ) ) ∈ ℋ ) | |
| 16 | 2 1 15 | syl2an | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ ( LinFn ∩ ContFn ) ) → ( ( ∗ ‘ 𝐴 ) ·ℎ ( ◡ bra ‘ 𝑇 ) ) ∈ ℋ ) |
| 17 | cnvbrabra | ⊢ ( ( ( ∗ ‘ 𝐴 ) ·ℎ ( ◡ bra ‘ 𝑇 ) ) ∈ ℋ → ( ◡ bra ‘ ( bra ‘ ( ( ∗ ‘ 𝐴 ) ·ℎ ( ◡ bra ‘ 𝑇 ) ) ) ) = ( ( ∗ ‘ 𝐴 ) ·ℎ ( ◡ bra ‘ 𝑇 ) ) ) | |
| 18 | 16 17 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ ( LinFn ∩ ContFn ) ) → ( ◡ bra ‘ ( bra ‘ ( ( ∗ ‘ 𝐴 ) ·ℎ ( ◡ bra ‘ 𝑇 ) ) ) ) = ( ( ∗ ‘ 𝐴 ) ·ℎ ( ◡ bra ‘ 𝑇 ) ) ) |
| 19 | 14 18 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ ( LinFn ∩ ContFn ) ) → ( ◡ bra ‘ ( 𝐴 ·fn 𝑇 ) ) = ( ( ∗ ‘ 𝐴 ) ·ℎ ( ◡ bra ‘ 𝑇 ) ) ) |