This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Dirac bra-ket associative law ( <. A | B >. ) <. C | = <. A | ( | B >. <. C | ) , i.e., the juxtaposition of an inner product with a bra equals a ket juxtaposed with an outer product. (Contributed by NM, 23-May-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kbass2 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ·fn ( bra ‘ 𝐶 ) ) = ( ( bra ‘ 𝐴 ) ∘ ( 𝐵 ketbra 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex | ⊢ ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) · ( ( bra ‘ 𝐶 ) ‘ 𝑥 ) ) ∈ V | |
| 2 | eqid | ⊢ ( 𝑥 ∈ ℋ ↦ ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) · ( ( bra ‘ 𝐶 ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℋ ↦ ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) · ( ( bra ‘ 𝐶 ) ‘ 𝑥 ) ) ) | |
| 3 | 1 2 | fnmpti | ⊢ ( 𝑥 ∈ ℋ ↦ ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) · ( ( bra ‘ 𝐶 ) ‘ 𝑥 ) ) ) Fn ℋ |
| 4 | bracl | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ∈ ℂ ) | |
| 5 | brafn | ⊢ ( 𝐶 ∈ ℋ → ( bra ‘ 𝐶 ) : ℋ ⟶ ℂ ) | |
| 6 | hfmmval | ⊢ ( ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ∈ ℂ ∧ ( bra ‘ 𝐶 ) : ℋ ⟶ ℂ ) → ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ·fn ( bra ‘ 𝐶 ) ) = ( 𝑥 ∈ ℋ ↦ ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) · ( ( bra ‘ 𝐶 ) ‘ 𝑥 ) ) ) ) | |
| 7 | 4 5 6 | syl2an | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ 𝐶 ∈ ℋ ) → ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ·fn ( bra ‘ 𝐶 ) ) = ( 𝑥 ∈ ℋ ↦ ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) · ( ( bra ‘ 𝐶 ) ‘ 𝑥 ) ) ) ) |
| 8 | 7 | 3impa | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ·fn ( bra ‘ 𝐶 ) ) = ( 𝑥 ∈ ℋ ↦ ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) · ( ( bra ‘ 𝐶 ) ‘ 𝑥 ) ) ) ) |
| 9 | 8 | fneq1d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ·fn ( bra ‘ 𝐶 ) ) Fn ℋ ↔ ( 𝑥 ∈ ℋ ↦ ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) · ( ( bra ‘ 𝐶 ) ‘ 𝑥 ) ) ) Fn ℋ ) ) |
| 10 | 3 9 | mpbiri | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ·fn ( bra ‘ 𝐶 ) ) Fn ℋ ) |
| 11 | brafn | ⊢ ( 𝐴 ∈ ℋ → ( bra ‘ 𝐴 ) : ℋ ⟶ ℂ ) | |
| 12 | kbop | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 ketbra 𝐶 ) : ℋ ⟶ ℋ ) | |
| 13 | fco | ⊢ ( ( ( bra ‘ 𝐴 ) : ℋ ⟶ ℂ ∧ ( 𝐵 ketbra 𝐶 ) : ℋ ⟶ ℋ ) → ( ( bra ‘ 𝐴 ) ∘ ( 𝐵 ketbra 𝐶 ) ) : ℋ ⟶ ℂ ) | |
| 14 | 11 12 13 | syl2an | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ) → ( ( bra ‘ 𝐴 ) ∘ ( 𝐵 ketbra 𝐶 ) ) : ℋ ⟶ ℂ ) |
| 15 | 14 | 3impb | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ∘ ( 𝐵 ketbra 𝐶 ) ) : ℋ ⟶ ℂ ) |
| 16 | 15 | ffnd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ∘ ( 𝐵 ketbra 𝐶 ) ) Fn ℋ ) |
| 17 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → 𝐴 ∈ ℋ ) | |
| 18 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → 𝐵 ∈ ℋ ) | |
| 19 | braval | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) = ( 𝐵 ·ih 𝐴 ) ) | |
| 20 | 17 18 19 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) = ( 𝐵 ·ih 𝐴 ) ) |
| 21 | simpl3 | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → 𝐶 ∈ ℋ ) | |
| 22 | simpr | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → 𝑥 ∈ ℋ ) | |
| 23 | braval | ⊢ ( ( 𝐶 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( bra ‘ 𝐶 ) ‘ 𝑥 ) = ( 𝑥 ·ih 𝐶 ) ) | |
| 24 | 21 22 23 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( bra ‘ 𝐶 ) ‘ 𝑥 ) = ( 𝑥 ·ih 𝐶 ) ) |
| 25 | 20 24 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) · ( ( bra ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( 𝐵 ·ih 𝐴 ) · ( 𝑥 ·ih 𝐶 ) ) ) |
| 26 | hicl | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐵 ·ih 𝐴 ) ∈ ℂ ) | |
| 27 | 18 17 26 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( 𝐵 ·ih 𝐴 ) ∈ ℂ ) |
| 28 | 20 27 | eqeltrd | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ∈ ℂ ) |
| 29 | 21 5 | syl | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( bra ‘ 𝐶 ) : ℋ ⟶ ℂ ) |
| 30 | hfmval | ⊢ ( ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ∈ ℂ ∧ ( bra ‘ 𝐶 ) : ℋ ⟶ ℂ ∧ 𝑥 ∈ ℋ ) → ( ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ·fn ( bra ‘ 𝐶 ) ) ‘ 𝑥 ) = ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) · ( ( bra ‘ 𝐶 ) ‘ 𝑥 ) ) ) | |
| 31 | 28 29 22 30 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ·fn ( bra ‘ 𝐶 ) ) ‘ 𝑥 ) = ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) · ( ( bra ‘ 𝐶 ) ‘ 𝑥 ) ) ) |
| 32 | hicl | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝑥 ·ih 𝐶 ) ∈ ℂ ) | |
| 33 | 22 21 32 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( 𝑥 ·ih 𝐶 ) ∈ ℂ ) |
| 34 | ax-his3 | ⊢ ( ( ( 𝑥 ·ih 𝐶 ) ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( 𝑥 ·ih 𝐶 ) ·ℎ 𝐵 ) ·ih 𝐴 ) = ( ( 𝑥 ·ih 𝐶 ) · ( 𝐵 ·ih 𝐴 ) ) ) | |
| 35 | 33 18 17 34 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑥 ·ih 𝐶 ) ·ℎ 𝐵 ) ·ih 𝐴 ) = ( ( 𝑥 ·ih 𝐶 ) · ( 𝐵 ·ih 𝐴 ) ) ) |
| 36 | 12 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 ketbra 𝐶 ) : ℋ ⟶ ℋ ) |
| 37 | fvco3 | ⊢ ( ( ( 𝐵 ketbra 𝐶 ) : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( bra ‘ 𝐴 ) ∘ ( 𝐵 ketbra 𝐶 ) ) ‘ 𝑥 ) = ( ( bra ‘ 𝐴 ) ‘ ( ( 𝐵 ketbra 𝐶 ) ‘ 𝑥 ) ) ) | |
| 38 | 36 37 | sylan | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( bra ‘ 𝐴 ) ∘ ( 𝐵 ketbra 𝐶 ) ) ‘ 𝑥 ) = ( ( bra ‘ 𝐴 ) ‘ ( ( 𝐵 ketbra 𝐶 ) ‘ 𝑥 ) ) ) |
| 39 | kbval | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝐵 ketbra 𝐶 ) ‘ 𝑥 ) = ( ( 𝑥 ·ih 𝐶 ) ·ℎ 𝐵 ) ) | |
| 40 | 18 21 22 39 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝐵 ketbra 𝐶 ) ‘ 𝑥 ) = ( ( 𝑥 ·ih 𝐶 ) ·ℎ 𝐵 ) ) |
| 41 | 40 | fveq2d | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ ( ( 𝐵 ketbra 𝐶 ) ‘ 𝑥 ) ) = ( ( bra ‘ 𝐴 ) ‘ ( ( 𝑥 ·ih 𝐶 ) ·ℎ 𝐵 ) ) ) |
| 42 | hvmulcl | ⊢ ( ( ( 𝑥 ·ih 𝐶 ) ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( 𝑥 ·ih 𝐶 ) ·ℎ 𝐵 ) ∈ ℋ ) | |
| 43 | 33 18 42 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝑥 ·ih 𝐶 ) ·ℎ 𝐵 ) ∈ ℋ ) |
| 44 | braval | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( ( 𝑥 ·ih 𝐶 ) ·ℎ 𝐵 ) ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ ( ( 𝑥 ·ih 𝐶 ) ·ℎ 𝐵 ) ) = ( ( ( 𝑥 ·ih 𝐶 ) ·ℎ 𝐵 ) ·ih 𝐴 ) ) | |
| 45 | 17 43 44 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ ( ( 𝑥 ·ih 𝐶 ) ·ℎ 𝐵 ) ) = ( ( ( 𝑥 ·ih 𝐶 ) ·ℎ 𝐵 ) ·ih 𝐴 ) ) |
| 46 | 38 41 45 | 3eqtrd | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( bra ‘ 𝐴 ) ∘ ( 𝐵 ketbra 𝐶 ) ) ‘ 𝑥 ) = ( ( ( 𝑥 ·ih 𝐶 ) ·ℎ 𝐵 ) ·ih 𝐴 ) ) |
| 47 | 27 33 | mulcomd | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝐵 ·ih 𝐴 ) · ( 𝑥 ·ih 𝐶 ) ) = ( ( 𝑥 ·ih 𝐶 ) · ( 𝐵 ·ih 𝐴 ) ) ) |
| 48 | 35 46 47 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( bra ‘ 𝐴 ) ∘ ( 𝐵 ketbra 𝐶 ) ) ‘ 𝑥 ) = ( ( 𝐵 ·ih 𝐴 ) · ( 𝑥 ·ih 𝐶 ) ) ) |
| 49 | 25 31 48 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ·fn ( bra ‘ 𝐶 ) ) ‘ 𝑥 ) = ( ( ( bra ‘ 𝐴 ) ∘ ( 𝐵 ketbra 𝐶 ) ) ‘ 𝑥 ) ) |
| 50 | 10 16 49 | eqfnfvd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ·fn ( bra ‘ 𝐶 ) ) = ( ( bra ‘ 𝐴 ) ∘ ( 𝐵 ketbra 𝐶 ) ) ) |