This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication property of outer product. (Contributed by NM, 31-May-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kbmul | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐵 ) ketbra 𝐶 ) = ( 𝐵 ketbra ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvmulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ ) | |
| 2 | kbfval | ⊢ ( ( ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐵 ) ketbra 𝐶 ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑥 ·ih 𝐶 ) ·ℎ ( 𝐴 ·ℎ 𝐵 ) ) ) ) | |
| 3 | 1 2 | stoic3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐵 ) ketbra 𝐶 ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑥 ·ih 𝐶 ) ·ℎ ( 𝐴 ·ℎ 𝐵 ) ) ) ) |
| 4 | simp2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → 𝐵 ∈ ℋ ) | |
| 5 | cjcl | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) ∈ ℂ ) | |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
| 7 | simp3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → 𝐶 ∈ ℋ ) | |
| 8 | hvmulcl | ⊢ ( ( ( ∗ ‘ 𝐴 ) ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ∈ ℋ ) | |
| 9 | 6 7 8 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ∈ ℋ ) |
| 10 | kbfval | ⊢ ( ( 𝐵 ∈ ℋ ∧ ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ∈ ℋ ) → ( 𝐵 ketbra ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑥 ·ih ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ) ·ℎ 𝐵 ) ) ) | |
| 11 | 4 9 10 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 ketbra ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑥 ·ih ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ) ·ℎ 𝐵 ) ) ) |
| 12 | simpr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → 𝑥 ∈ ℋ ) | |
| 13 | simpl3 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → 𝐶 ∈ ℋ ) | |
| 14 | hicl | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝑥 ·ih 𝐶 ) ∈ ℂ ) | |
| 15 | 12 13 14 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( 𝑥 ·ih 𝐶 ) ∈ ℂ ) |
| 16 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → 𝐴 ∈ ℂ ) | |
| 17 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → 𝐵 ∈ ℋ ) | |
| 18 | ax-hvmulass | ⊢ ( ( ( 𝑥 ·ih 𝐶 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( ( 𝑥 ·ih 𝐶 ) · 𝐴 ) ·ℎ 𝐵 ) = ( ( 𝑥 ·ih 𝐶 ) ·ℎ ( 𝐴 ·ℎ 𝐵 ) ) ) | |
| 19 | 15 16 17 18 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑥 ·ih 𝐶 ) · 𝐴 ) ·ℎ 𝐵 ) = ( ( 𝑥 ·ih 𝐶 ) ·ℎ ( 𝐴 ·ℎ 𝐵 ) ) ) |
| 20 | 15 16 | mulcomd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝑥 ·ih 𝐶 ) · 𝐴 ) = ( 𝐴 · ( 𝑥 ·ih 𝐶 ) ) ) |
| 21 | his52 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝑥 ·ih ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ) = ( 𝐴 · ( 𝑥 ·ih 𝐶 ) ) ) | |
| 22 | 16 12 13 21 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( 𝑥 ·ih ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ) = ( 𝐴 · ( 𝑥 ·ih 𝐶 ) ) ) |
| 23 | 20 22 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝑥 ·ih 𝐶 ) · 𝐴 ) = ( 𝑥 ·ih ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ) ) |
| 24 | 23 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑥 ·ih 𝐶 ) · 𝐴 ) ·ℎ 𝐵 ) = ( ( 𝑥 ·ih ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ) ·ℎ 𝐵 ) ) |
| 25 | 19 24 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝑥 ·ih 𝐶 ) ·ℎ ( 𝐴 ·ℎ 𝐵 ) ) = ( ( 𝑥 ·ih ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ) ·ℎ 𝐵 ) ) |
| 26 | 25 | mpteq2dva | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝑥 ∈ ℋ ↦ ( ( 𝑥 ·ih 𝐶 ) ·ℎ ( 𝐴 ·ℎ 𝐵 ) ) ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑥 ·ih ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ) ·ℎ 𝐵 ) ) ) |
| 27 | 11 26 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 ketbra ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑥 ·ih 𝐶 ) ·ℎ ( 𝐴 ·ℎ 𝐵 ) ) ) ) |
| 28 | 3 27 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐵 ) ketbra 𝐶 ) = ( 𝐵 ketbra ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ) ) |