This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Dirac bra-ket associative law ( <. A | B >. ) <. C | = <. A | ( | B >. <. C | ) , i.e., the juxtaposition of an inner product with a bra equals a ket juxtaposed with an outer product. (Contributed by NM, 23-May-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kbass2 | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( ( bra ` A ) ` B ) .fn ( bra ` C ) ) = ( ( bra ` A ) o. ( B ketbra C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex | |- ( ( ( bra ` A ) ` B ) x. ( ( bra ` C ) ` x ) ) e. _V |
|
| 2 | eqid | |- ( x e. ~H |-> ( ( ( bra ` A ) ` B ) x. ( ( bra ` C ) ` x ) ) ) = ( x e. ~H |-> ( ( ( bra ` A ) ` B ) x. ( ( bra ` C ) ` x ) ) ) |
|
| 3 | 1 2 | fnmpti | |- ( x e. ~H |-> ( ( ( bra ` A ) ` B ) x. ( ( bra ` C ) ` x ) ) ) Fn ~H |
| 4 | bracl | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( bra ` A ) ` B ) e. CC ) |
|
| 5 | brafn | |- ( C e. ~H -> ( bra ` C ) : ~H --> CC ) |
|
| 6 | hfmmval | |- ( ( ( ( bra ` A ) ` B ) e. CC /\ ( bra ` C ) : ~H --> CC ) -> ( ( ( bra ` A ) ` B ) .fn ( bra ` C ) ) = ( x e. ~H |-> ( ( ( bra ` A ) ` B ) x. ( ( bra ` C ) ` x ) ) ) ) |
|
| 7 | 4 5 6 | syl2an | |- ( ( ( A e. ~H /\ B e. ~H ) /\ C e. ~H ) -> ( ( ( bra ` A ) ` B ) .fn ( bra ` C ) ) = ( x e. ~H |-> ( ( ( bra ` A ) ` B ) x. ( ( bra ` C ) ` x ) ) ) ) |
| 8 | 7 | 3impa | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( ( bra ` A ) ` B ) .fn ( bra ` C ) ) = ( x e. ~H |-> ( ( ( bra ` A ) ` B ) x. ( ( bra ` C ) ` x ) ) ) ) |
| 9 | 8 | fneq1d | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( ( ( bra ` A ) ` B ) .fn ( bra ` C ) ) Fn ~H <-> ( x e. ~H |-> ( ( ( bra ` A ) ` B ) x. ( ( bra ` C ) ` x ) ) ) Fn ~H ) ) |
| 10 | 3 9 | mpbiri | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( ( bra ` A ) ` B ) .fn ( bra ` C ) ) Fn ~H ) |
| 11 | brafn | |- ( A e. ~H -> ( bra ` A ) : ~H --> CC ) |
|
| 12 | kbop | |- ( ( B e. ~H /\ C e. ~H ) -> ( B ketbra C ) : ~H --> ~H ) |
|
| 13 | fco | |- ( ( ( bra ` A ) : ~H --> CC /\ ( B ketbra C ) : ~H --> ~H ) -> ( ( bra ` A ) o. ( B ketbra C ) ) : ~H --> CC ) |
|
| 14 | 11 12 13 | syl2an | |- ( ( A e. ~H /\ ( B e. ~H /\ C e. ~H ) ) -> ( ( bra ` A ) o. ( B ketbra C ) ) : ~H --> CC ) |
| 15 | 14 | 3impb | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( bra ` A ) o. ( B ketbra C ) ) : ~H --> CC ) |
| 16 | 15 | ffnd | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( bra ` A ) o. ( B ketbra C ) ) Fn ~H ) |
| 17 | simpl1 | |- ( ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) /\ x e. ~H ) -> A e. ~H ) |
|
| 18 | simpl2 | |- ( ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) /\ x e. ~H ) -> B e. ~H ) |
|
| 19 | braval | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( bra ` A ) ` B ) = ( B .ih A ) ) |
|
| 20 | 17 18 19 | syl2anc | |- ( ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) /\ x e. ~H ) -> ( ( bra ` A ) ` B ) = ( B .ih A ) ) |
| 21 | simpl3 | |- ( ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) /\ x e. ~H ) -> C e. ~H ) |
|
| 22 | simpr | |- ( ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) /\ x e. ~H ) -> x e. ~H ) |
|
| 23 | braval | |- ( ( C e. ~H /\ x e. ~H ) -> ( ( bra ` C ) ` x ) = ( x .ih C ) ) |
|
| 24 | 21 22 23 | syl2anc | |- ( ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) /\ x e. ~H ) -> ( ( bra ` C ) ` x ) = ( x .ih C ) ) |
| 25 | 20 24 | oveq12d | |- ( ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) /\ x e. ~H ) -> ( ( ( bra ` A ) ` B ) x. ( ( bra ` C ) ` x ) ) = ( ( B .ih A ) x. ( x .ih C ) ) ) |
| 26 | hicl | |- ( ( B e. ~H /\ A e. ~H ) -> ( B .ih A ) e. CC ) |
|
| 27 | 18 17 26 | syl2anc | |- ( ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) /\ x e. ~H ) -> ( B .ih A ) e. CC ) |
| 28 | 20 27 | eqeltrd | |- ( ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) /\ x e. ~H ) -> ( ( bra ` A ) ` B ) e. CC ) |
| 29 | 21 5 | syl | |- ( ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) /\ x e. ~H ) -> ( bra ` C ) : ~H --> CC ) |
| 30 | hfmval | |- ( ( ( ( bra ` A ) ` B ) e. CC /\ ( bra ` C ) : ~H --> CC /\ x e. ~H ) -> ( ( ( ( bra ` A ) ` B ) .fn ( bra ` C ) ) ` x ) = ( ( ( bra ` A ) ` B ) x. ( ( bra ` C ) ` x ) ) ) |
|
| 31 | 28 29 22 30 | syl3anc | |- ( ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) /\ x e. ~H ) -> ( ( ( ( bra ` A ) ` B ) .fn ( bra ` C ) ) ` x ) = ( ( ( bra ` A ) ` B ) x. ( ( bra ` C ) ` x ) ) ) |
| 32 | hicl | |- ( ( x e. ~H /\ C e. ~H ) -> ( x .ih C ) e. CC ) |
|
| 33 | 22 21 32 | syl2anc | |- ( ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) /\ x e. ~H ) -> ( x .ih C ) e. CC ) |
| 34 | ax-his3 | |- ( ( ( x .ih C ) e. CC /\ B e. ~H /\ A e. ~H ) -> ( ( ( x .ih C ) .h B ) .ih A ) = ( ( x .ih C ) x. ( B .ih A ) ) ) |
|
| 35 | 33 18 17 34 | syl3anc | |- ( ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) /\ x e. ~H ) -> ( ( ( x .ih C ) .h B ) .ih A ) = ( ( x .ih C ) x. ( B .ih A ) ) ) |
| 36 | 12 | 3adant1 | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( B ketbra C ) : ~H --> ~H ) |
| 37 | fvco3 | |- ( ( ( B ketbra C ) : ~H --> ~H /\ x e. ~H ) -> ( ( ( bra ` A ) o. ( B ketbra C ) ) ` x ) = ( ( bra ` A ) ` ( ( B ketbra C ) ` x ) ) ) |
|
| 38 | 36 37 | sylan | |- ( ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) /\ x e. ~H ) -> ( ( ( bra ` A ) o. ( B ketbra C ) ) ` x ) = ( ( bra ` A ) ` ( ( B ketbra C ) ` x ) ) ) |
| 39 | kbval | |- ( ( B e. ~H /\ C e. ~H /\ x e. ~H ) -> ( ( B ketbra C ) ` x ) = ( ( x .ih C ) .h B ) ) |
|
| 40 | 18 21 22 39 | syl3anc | |- ( ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) /\ x e. ~H ) -> ( ( B ketbra C ) ` x ) = ( ( x .ih C ) .h B ) ) |
| 41 | 40 | fveq2d | |- ( ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) /\ x e. ~H ) -> ( ( bra ` A ) ` ( ( B ketbra C ) ` x ) ) = ( ( bra ` A ) ` ( ( x .ih C ) .h B ) ) ) |
| 42 | hvmulcl | |- ( ( ( x .ih C ) e. CC /\ B e. ~H ) -> ( ( x .ih C ) .h B ) e. ~H ) |
|
| 43 | 33 18 42 | syl2anc | |- ( ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) /\ x e. ~H ) -> ( ( x .ih C ) .h B ) e. ~H ) |
| 44 | braval | |- ( ( A e. ~H /\ ( ( x .ih C ) .h B ) e. ~H ) -> ( ( bra ` A ) ` ( ( x .ih C ) .h B ) ) = ( ( ( x .ih C ) .h B ) .ih A ) ) |
|
| 45 | 17 43 44 | syl2anc | |- ( ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) /\ x e. ~H ) -> ( ( bra ` A ) ` ( ( x .ih C ) .h B ) ) = ( ( ( x .ih C ) .h B ) .ih A ) ) |
| 46 | 38 41 45 | 3eqtrd | |- ( ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) /\ x e. ~H ) -> ( ( ( bra ` A ) o. ( B ketbra C ) ) ` x ) = ( ( ( x .ih C ) .h B ) .ih A ) ) |
| 47 | 27 33 | mulcomd | |- ( ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) /\ x e. ~H ) -> ( ( B .ih A ) x. ( x .ih C ) ) = ( ( x .ih C ) x. ( B .ih A ) ) ) |
| 48 | 35 46 47 | 3eqtr4d | |- ( ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) /\ x e. ~H ) -> ( ( ( bra ` A ) o. ( B ketbra C ) ) ` x ) = ( ( B .ih A ) x. ( x .ih C ) ) ) |
| 49 | 25 31 48 | 3eqtr4d | |- ( ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) /\ x e. ~H ) -> ( ( ( ( bra ` A ) ` B ) .fn ( bra ` C ) ) ` x ) = ( ( ( bra ` A ) o. ( B ketbra C ) ) ` x ) ) |
| 50 | 10 16 49 | eqfnfvd | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( ( bra ` A ) ` B ) .fn ( bra ` C ) ) = ( ( bra ` A ) o. ( B ketbra C ) ) ) |