This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the scalar product with a Hilbert space functional. (Contributed by NM, 23-May-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hfmval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·fn 𝑇 ) ‘ 𝐵 ) = ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hfmmval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℂ ) → ( 𝐴 ·fn 𝑇 ) = ( 𝑥 ∈ ℋ ↦ ( 𝐴 · ( 𝑇 ‘ 𝑥 ) ) ) ) | |
| 2 | 1 | fveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℂ ) → ( ( 𝐴 ·fn 𝑇 ) ‘ 𝐵 ) = ( ( 𝑥 ∈ ℋ ↦ ( 𝐴 · ( 𝑇 ‘ 𝑥 ) ) ) ‘ 𝐵 ) ) |
| 3 | fveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝐵 ) ) | |
| 4 | 3 | oveq2d | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 · ( 𝑇 ‘ 𝑥 ) ) = ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) ) |
| 5 | eqid | ⊢ ( 𝑥 ∈ ℋ ↦ ( 𝐴 · ( 𝑇 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℋ ↦ ( 𝐴 · ( 𝑇 ‘ 𝑥 ) ) ) | |
| 6 | ovex | ⊢ ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) ∈ V | |
| 7 | 4 5 6 | fvmpt | ⊢ ( 𝐵 ∈ ℋ → ( ( 𝑥 ∈ ℋ ↦ ( 𝐴 · ( 𝑇 ‘ 𝑥 ) ) ) ‘ 𝐵 ) = ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) ) |
| 8 | 2 7 | sylan9eq | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℂ ) ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·fn 𝑇 ) ‘ 𝐵 ) = ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) ) |
| 9 | 8 | 3impa | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·fn 𝑇 ) ‘ 𝐵 ) = ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) ) |