This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Dirac bra-ket associative law <. A | B >. <. C | D >. = ( <. A | B >. <. C | ) | D >. . (Contributed by NM, 30-May-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kbass3 | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) · ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) ) = ( ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ·fn ( bra ‘ 𝐶 ) ) ‘ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bracl | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ∈ ℂ ) | |
| 2 | 1 | adantr | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ∈ ℂ ) |
| 3 | brafn | ⊢ ( 𝐶 ∈ ℋ → ( bra ‘ 𝐶 ) : ℋ ⟶ ℂ ) | |
| 4 | 3 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( bra ‘ 𝐶 ) : ℋ ⟶ ℂ ) |
| 5 | simprr | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → 𝐷 ∈ ℋ ) | |
| 6 | hfmval | ⊢ ( ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ∈ ℂ ∧ ( bra ‘ 𝐶 ) : ℋ ⟶ ℂ ∧ 𝐷 ∈ ℋ ) → ( ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ·fn ( bra ‘ 𝐶 ) ) ‘ 𝐷 ) = ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) · ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) ) ) | |
| 7 | 2 4 5 6 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ·fn ( bra ‘ 𝐶 ) ) ‘ 𝐷 ) = ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) · ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) ) ) |
| 8 | 7 | eqcomd | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) · ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) ) = ( ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ·fn ( bra ‘ 𝐶 ) ) ‘ 𝐷 ) ) |