This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the scalar product with a Hilbert space functional. (Contributed by NM, 23-May-2006) (Revised by Mario Carneiro, 23-Aug-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hfmmval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℂ ) → ( 𝐴 ·fn 𝑇 ) = ( 𝑥 ∈ ℋ ↦ ( 𝐴 · ( 𝑇 ‘ 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex | ⊢ ℂ ∈ V | |
| 2 | ax-hilex | ⊢ ℋ ∈ V | |
| 3 | 1 2 | elmap | ⊢ ( 𝑇 ∈ ( ℂ ↑m ℋ ) ↔ 𝑇 : ℋ ⟶ ℂ ) |
| 4 | oveq1 | ⊢ ( 𝑓 = 𝐴 → ( 𝑓 · ( 𝑔 ‘ 𝑥 ) ) = ( 𝐴 · ( 𝑔 ‘ 𝑥 ) ) ) | |
| 5 | 4 | mpteq2dv | ⊢ ( 𝑓 = 𝐴 → ( 𝑥 ∈ ℋ ↦ ( 𝑓 · ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℋ ↦ ( 𝐴 · ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 6 | fveq1 | ⊢ ( 𝑔 = 𝑇 → ( 𝑔 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) | |
| 7 | 6 | oveq2d | ⊢ ( 𝑔 = 𝑇 → ( 𝐴 · ( 𝑔 ‘ 𝑥 ) ) = ( 𝐴 · ( 𝑇 ‘ 𝑥 ) ) ) |
| 8 | 7 | mpteq2dv | ⊢ ( 𝑔 = 𝑇 → ( 𝑥 ∈ ℋ ↦ ( 𝐴 · ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℋ ↦ ( 𝐴 · ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 9 | df-hfmul | ⊢ ·fn = ( 𝑓 ∈ ℂ , 𝑔 ∈ ( ℂ ↑m ℋ ) ↦ ( 𝑥 ∈ ℋ ↦ ( 𝑓 · ( 𝑔 ‘ 𝑥 ) ) ) ) | |
| 10 | 2 | mptex | ⊢ ( 𝑥 ∈ ℋ ↦ ( 𝐴 · ( 𝑇 ‘ 𝑥 ) ) ) ∈ V |
| 11 | 5 8 9 10 | ovmpo | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 ∈ ( ℂ ↑m ℋ ) ) → ( 𝐴 ·fn 𝑇 ) = ( 𝑥 ∈ ℋ ↦ ( 𝐴 · ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 12 | 3 11 | sylan2br | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℂ ) → ( 𝐴 ·fn 𝑇 ) = ( 𝑥 ∈ ℋ ↦ ( 𝐴 · ( 𝑇 ‘ 𝑥 ) ) ) ) |