This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite Cartesian product is a subset of set exponentiation. (Contributed by Jeff Madsen, 19-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ixpssmapg | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X 𝑥 ∈ 𝐴 𝐵 ⊆ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i | ⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 → ¬ X 𝑥 ∈ 𝐴 𝐵 = ∅ ) | |
| 2 | ixpprc | ⊢ ( ¬ 𝐴 ∈ V → X 𝑥 ∈ 𝐴 𝐵 = ∅ ) | |
| 3 | 1 2 | nsyl2 | ⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 → 𝐴 ∈ V ) |
| 4 | id | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) | |
| 5 | iunexg | ⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V ) | |
| 6 | 3 4 5 | syl2anr | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
| 7 | ixpssmap2g | ⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V → X 𝑥 ∈ 𝐴 𝐵 ⊆ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ) | |
| 8 | 6 7 | syl | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ) → X 𝑥 ∈ 𝐴 𝐵 ⊆ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ) |
| 9 | simpr | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ) → 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ) | |
| 10 | 8 9 | sseldd | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ) → 𝑓 ∈ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ) |
| 11 | 10 | ex | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 → 𝑓 ∈ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ) ) |
| 12 | 11 | ssrdv | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X 𝑥 ∈ 𝐴 𝐵 ⊆ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ) |