This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite Cartesian product is a subset of set exponentiation. This version of ixpssmapg avoids ax-rep . (Contributed by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ixpssmap2g | ⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X 𝑥 ∈ 𝐴 𝐵 ⊆ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixpf | ⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 → 𝑓 : 𝐴 ⟶ ∪ 𝑥 ∈ 𝐴 𝐵 ) | |
| 2 | 1 | adantl | ⊢ ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ) → 𝑓 : 𝐴 ⟶ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 3 | n0i | ⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 → ¬ X 𝑥 ∈ 𝐴 𝐵 = ∅ ) | |
| 4 | ixpprc | ⊢ ( ¬ 𝐴 ∈ V → X 𝑥 ∈ 𝐴 𝐵 = ∅ ) | |
| 5 | 3 4 | nsyl2 | ⊢ ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 → 𝐴 ∈ V ) |
| 6 | elmapg | ⊢ ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ V ) → ( 𝑓 ∈ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ↔ 𝑓 : 𝐴 ⟶ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) | |
| 7 | 5 6 | sylan2 | ⊢ ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ) → ( 𝑓 ∈ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ↔ 𝑓 : 𝐴 ⟶ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
| 8 | 2 7 | mpbird | ⊢ ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 ) → 𝑓 ∈ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ) |
| 9 | 8 | ex | ⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ( 𝑓 ∈ X 𝑥 ∈ 𝐴 𝐵 → 𝑓 ∈ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ) ) |
| 10 | 9 | ssrdv | ⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X 𝑥 ∈ 𝐴 𝐵 ⊆ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ) |