This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 20-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvixp.1 | ⊢ Ⅎ 𝑦 𝐵 | |
| cbvixp.2 | ⊢ Ⅎ 𝑥 𝐶 | ||
| cbvixp.3 | ⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 ) | ||
| Assertion | cbvixp | ⊢ X 𝑥 ∈ 𝐴 𝐵 = X 𝑦 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvixp.1 | ⊢ Ⅎ 𝑦 𝐵 | |
| 2 | cbvixp.2 | ⊢ Ⅎ 𝑥 𝐶 | |
| 3 | cbvixp.3 | ⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 ) | |
| 4 | 1 | nfel2 | ⊢ Ⅎ 𝑦 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 |
| 5 | 2 | nfel2 | ⊢ Ⅎ 𝑥 ( 𝑓 ‘ 𝑦 ) ∈ 𝐶 |
| 6 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑦 ) ) | |
| 7 | 6 3 | eleq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ↔ ( 𝑓 ‘ 𝑦 ) ∈ 𝐶 ) ) |
| 8 | 4 5 7 | cbvralw | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ∈ 𝐶 ) |
| 9 | 8 | anbi2i | ⊢ ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ∈ 𝐶 ) ) |
| 10 | 9 | abbii | ⊢ { 𝑓 ∣ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) } = { 𝑓 ∣ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ∈ 𝐶 ) } |
| 11 | dfixp | ⊢ X 𝑥 ∈ 𝐴 𝐵 = { 𝑓 ∣ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) } | |
| 12 | dfixp | ⊢ X 𝑦 ∈ 𝐴 𝐶 = { 𝑓 ∣ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ∈ 𝐶 ) } | |
| 13 | 10 11 12 | 3eqtr4i | ⊢ X 𝑥 ∈ 𝐴 𝐵 = X 𝑦 ∈ 𝐴 𝐶 |