This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of closed subspaces of a pre-Hilbert space. (Contributed by NM, 7-Oct-2011) (Revised by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cssval.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | |
| cssval.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | ||
| Assertion | cssval | ⊢ ( 𝑊 ∈ 𝑋 → 𝐶 = { 𝑠 ∣ 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cssval.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | |
| 2 | cssval.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | |
| 3 | elex | ⊢ ( 𝑊 ∈ 𝑋 → 𝑊 ∈ V ) | |
| 4 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( ocv ‘ 𝑤 ) = ( ocv ‘ 𝑊 ) ) | |
| 5 | 4 1 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( ocv ‘ 𝑤 ) = ⊥ ) |
| 6 | 5 | fveq1d | ⊢ ( 𝑤 = 𝑊 → ( ( ocv ‘ 𝑤 ) ‘ 𝑠 ) = ( ⊥ ‘ 𝑠 ) ) |
| 7 | 5 6 | fveq12d | ⊢ ( 𝑤 = 𝑊 → ( ( ocv ‘ 𝑤 ) ‘ ( ( ocv ‘ 𝑤 ) ‘ 𝑠 ) ) = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) ) |
| 8 | 7 | eqeq2d | ⊢ ( 𝑤 = 𝑊 → ( 𝑠 = ( ( ocv ‘ 𝑤 ) ‘ ( ( ocv ‘ 𝑤 ) ‘ 𝑠 ) ) ↔ 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) ) ) |
| 9 | 8 | abbidv | ⊢ ( 𝑤 = 𝑊 → { 𝑠 ∣ 𝑠 = ( ( ocv ‘ 𝑤 ) ‘ ( ( ocv ‘ 𝑤 ) ‘ 𝑠 ) ) } = { 𝑠 ∣ 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) } ) |
| 10 | df-css | ⊢ ClSubSp = ( 𝑤 ∈ V ↦ { 𝑠 ∣ 𝑠 = ( ( ocv ‘ 𝑤 ) ‘ ( ( ocv ‘ 𝑤 ) ‘ 𝑠 ) ) } ) | |
| 11 | fvex | ⊢ ( Base ‘ 𝑊 ) ∈ V | |
| 12 | 11 | pwex | ⊢ 𝒫 ( Base ‘ 𝑊 ) ∈ V |
| 13 | id | ⊢ ( 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) → 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) ) | |
| 14 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 15 | 14 1 | ocvss | ⊢ ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) ⊆ ( Base ‘ 𝑊 ) |
| 16 | fvex | ⊢ ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) ∈ V | |
| 17 | 16 | elpw | ⊢ ( ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) ∈ 𝒫 ( Base ‘ 𝑊 ) ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) ⊆ ( Base ‘ 𝑊 ) ) |
| 18 | 15 17 | mpbir | ⊢ ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) ∈ 𝒫 ( Base ‘ 𝑊 ) |
| 19 | 13 18 | eqeltrdi | ⊢ ( 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) → 𝑠 ∈ 𝒫 ( Base ‘ 𝑊 ) ) |
| 20 | 19 | abssi | ⊢ { 𝑠 ∣ 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) } ⊆ 𝒫 ( Base ‘ 𝑊 ) |
| 21 | 12 20 | ssexi | ⊢ { 𝑠 ∣ 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) } ∈ V |
| 22 | 9 10 21 | fvmpt | ⊢ ( 𝑊 ∈ V → ( ClSubSp ‘ 𝑊 ) = { 𝑠 ∣ 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) } ) |
| 23 | 2 22 | eqtrid | ⊢ ( 𝑊 ∈ V → 𝐶 = { 𝑠 ∣ 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) } ) |
| 24 | 3 23 | syl | ⊢ ( 𝑊 ∈ 𝑋 → 𝐶 = { 𝑠 ∣ 𝑠 = ( ⊥ ‘ ( ⊥ ‘ 𝑠 ) ) } ) |