This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying a number is less than or equal to the minimum of two others. (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrlemin | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 ≤ if ( 𝐵 ≤ 𝐶 , 𝐵 , 𝐶 ) ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrmin1 | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → if ( 𝐵 ≤ 𝐶 , 𝐵 , 𝐶 ) ≤ 𝐵 ) | |
| 2 | 1 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → if ( 𝐵 ≤ 𝐶 , 𝐵 , 𝐶 ) ≤ 𝐵 ) |
| 3 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → 𝐴 ∈ ℝ* ) | |
| 4 | ifcl | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → if ( 𝐵 ≤ 𝐶 , 𝐵 , 𝐶 ) ∈ ℝ* ) | |
| 5 | 4 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → if ( 𝐵 ≤ 𝐶 , 𝐵 , 𝐶 ) ∈ ℝ* ) |
| 6 | simp2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → 𝐵 ∈ ℝ* ) | |
| 7 | xrletr | ⊢ ( ( 𝐴 ∈ ℝ* ∧ if ( 𝐵 ≤ 𝐶 , 𝐵 , 𝐶 ) ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 ≤ if ( 𝐵 ≤ 𝐶 , 𝐵 , 𝐶 ) ∧ if ( 𝐵 ≤ 𝐶 , 𝐵 , 𝐶 ) ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) ) | |
| 8 | 3 5 6 7 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 ≤ if ( 𝐵 ≤ 𝐶 , 𝐵 , 𝐶 ) ∧ if ( 𝐵 ≤ 𝐶 , 𝐵 , 𝐶 ) ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) ) |
| 9 | 2 8 | mpan2d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 ≤ if ( 𝐵 ≤ 𝐶 , 𝐵 , 𝐶 ) → 𝐴 ≤ 𝐵 ) ) |
| 10 | xrmin2 | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → if ( 𝐵 ≤ 𝐶 , 𝐵 , 𝐶 ) ≤ 𝐶 ) | |
| 11 | 10 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → if ( 𝐵 ≤ 𝐶 , 𝐵 , 𝐶 ) ≤ 𝐶 ) |
| 12 | xrletr | ⊢ ( ( 𝐴 ∈ ℝ* ∧ if ( 𝐵 ≤ 𝐶 , 𝐵 , 𝐶 ) ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 ≤ if ( 𝐵 ≤ 𝐶 , 𝐵 , 𝐶 ) ∧ if ( 𝐵 ≤ 𝐶 , 𝐵 , 𝐶 ) ≤ 𝐶 ) → 𝐴 ≤ 𝐶 ) ) | |
| 13 | 5 12 | syld3an2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 ≤ if ( 𝐵 ≤ 𝐶 , 𝐵 , 𝐶 ) ∧ if ( 𝐵 ≤ 𝐶 , 𝐵 , 𝐶 ) ≤ 𝐶 ) → 𝐴 ≤ 𝐶 ) ) |
| 14 | 11 13 | mpan2d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 ≤ if ( 𝐵 ≤ 𝐶 , 𝐵 , 𝐶 ) → 𝐴 ≤ 𝐶 ) ) |
| 15 | 9 14 | jcad | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 ≤ if ( 𝐵 ≤ 𝐶 , 𝐵 , 𝐶 ) → ( 𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐶 ) ) ) |
| 16 | breq2 | ⊢ ( 𝐵 = if ( 𝐵 ≤ 𝐶 , 𝐵 , 𝐶 ) → ( 𝐴 ≤ 𝐵 ↔ 𝐴 ≤ if ( 𝐵 ≤ 𝐶 , 𝐵 , 𝐶 ) ) ) | |
| 17 | breq2 | ⊢ ( 𝐶 = if ( 𝐵 ≤ 𝐶 , 𝐵 , 𝐶 ) → ( 𝐴 ≤ 𝐶 ↔ 𝐴 ≤ if ( 𝐵 ≤ 𝐶 , 𝐵 , 𝐶 ) ) ) | |
| 18 | 16 17 | ifboth | ⊢ ( ( 𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐶 ) → 𝐴 ≤ if ( 𝐵 ≤ 𝐶 , 𝐵 , 𝐶 ) ) |
| 19 | 15 18 | impbid1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 ≤ if ( 𝐵 ≤ 𝐶 , 𝐵 , 𝐶 ) ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐶 ) ) ) |