This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The S. integral splits on closed intervals with matching endpoints. (Contributed by Mario Carneiro, 13-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgspliticc.1 | |- ( ph -> A e. RR ) |
|
| itgspliticc.2 | |- ( ph -> C e. RR ) |
||
| itgspliticc.3 | |- ( ph -> B e. ( A [,] C ) ) |
||
| itgspliticc.4 | |- ( ( ph /\ x e. ( A [,] C ) ) -> D e. V ) |
||
| itgspliticc.5 | |- ( ph -> ( x e. ( A [,] B ) |-> D ) e. L^1 ) |
||
| itgspliticc.6 | |- ( ph -> ( x e. ( B [,] C ) |-> D ) e. L^1 ) |
||
| Assertion | itgspliticc | |- ( ph -> S. ( A [,] C ) D _d x = ( S. ( A [,] B ) D _d x + S. ( B [,] C ) D _d x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgspliticc.1 | |- ( ph -> A e. RR ) |
|
| 2 | itgspliticc.2 | |- ( ph -> C e. RR ) |
|
| 3 | itgspliticc.3 | |- ( ph -> B e. ( A [,] C ) ) |
|
| 4 | itgspliticc.4 | |- ( ( ph /\ x e. ( A [,] C ) ) -> D e. V ) |
|
| 5 | itgspliticc.5 | |- ( ph -> ( x e. ( A [,] B ) |-> D ) e. L^1 ) |
|
| 6 | itgspliticc.6 | |- ( ph -> ( x e. ( B [,] C ) |-> D ) e. L^1 ) |
|
| 7 | 1 | rexrd | |- ( ph -> A e. RR* ) |
| 8 | elicc2 | |- ( ( A e. RR /\ C e. RR ) -> ( B e. ( A [,] C ) <-> ( B e. RR /\ A <_ B /\ B <_ C ) ) ) |
|
| 9 | 1 2 8 | syl2anc | |- ( ph -> ( B e. ( A [,] C ) <-> ( B e. RR /\ A <_ B /\ B <_ C ) ) ) |
| 10 | 3 9 | mpbid | |- ( ph -> ( B e. RR /\ A <_ B /\ B <_ C ) ) |
| 11 | 10 | simp1d | |- ( ph -> B e. RR ) |
| 12 | 11 | rexrd | |- ( ph -> B e. RR* ) |
| 13 | 2 | rexrd | |- ( ph -> C e. RR* ) |
| 14 | df-icc | |- [,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z <_ y ) } ) |
|
| 15 | xrmaxle | |- ( ( A e. RR* /\ B e. RR* /\ z e. RR* ) -> ( if ( A <_ B , B , A ) <_ z <-> ( A <_ z /\ B <_ z ) ) ) |
|
| 16 | xrlemin | |- ( ( z e. RR* /\ B e. RR* /\ C e. RR* ) -> ( z <_ if ( B <_ C , B , C ) <-> ( z <_ B /\ z <_ C ) ) ) |
|
| 17 | 14 15 16 | ixxin | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( B e. RR* /\ C e. RR* ) ) -> ( ( A [,] B ) i^i ( B [,] C ) ) = ( if ( A <_ B , B , A ) [,] if ( B <_ C , B , C ) ) ) |
| 18 | 7 12 12 13 17 | syl22anc | |- ( ph -> ( ( A [,] B ) i^i ( B [,] C ) ) = ( if ( A <_ B , B , A ) [,] if ( B <_ C , B , C ) ) ) |
| 19 | 10 | simp2d | |- ( ph -> A <_ B ) |
| 20 | 19 | iftrued | |- ( ph -> if ( A <_ B , B , A ) = B ) |
| 21 | 10 | simp3d | |- ( ph -> B <_ C ) |
| 22 | 21 | iftrued | |- ( ph -> if ( B <_ C , B , C ) = B ) |
| 23 | 20 22 | oveq12d | |- ( ph -> ( if ( A <_ B , B , A ) [,] if ( B <_ C , B , C ) ) = ( B [,] B ) ) |
| 24 | iccid | |- ( B e. RR* -> ( B [,] B ) = { B } ) |
|
| 25 | 12 24 | syl | |- ( ph -> ( B [,] B ) = { B } ) |
| 26 | 18 23 25 | 3eqtrd | |- ( ph -> ( ( A [,] B ) i^i ( B [,] C ) ) = { B } ) |
| 27 | 26 | fveq2d | |- ( ph -> ( vol* ` ( ( A [,] B ) i^i ( B [,] C ) ) ) = ( vol* ` { B } ) ) |
| 28 | ovolsn | |- ( B e. RR -> ( vol* ` { B } ) = 0 ) |
|
| 29 | 11 28 | syl | |- ( ph -> ( vol* ` { B } ) = 0 ) |
| 30 | 27 29 | eqtrd | |- ( ph -> ( vol* ` ( ( A [,] B ) i^i ( B [,] C ) ) ) = 0 ) |
| 31 | iccsplit | |- ( ( A e. RR /\ C e. RR /\ B e. ( A [,] C ) ) -> ( A [,] C ) = ( ( A [,] B ) u. ( B [,] C ) ) ) |
|
| 32 | 1 2 3 31 | syl3anc | |- ( ph -> ( A [,] C ) = ( ( A [,] B ) u. ( B [,] C ) ) ) |
| 33 | 30 32 4 5 6 | itgsplit | |- ( ph -> S. ( A [,] C ) D _d x = ( S. ( A [,] B ) D _d x + S. ( B [,] C ) D _d x ) ) |