This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the integral on nonnegative real functions. (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | itg2val.1 | ⊢ 𝐿 = { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } | |
| Assertion | itg2val | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ 𝐹 ) = sup ( 𝐿 , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2val.1 | ⊢ 𝐿 = { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } | |
| 2 | xrltso | ⊢ < Or ℝ* | |
| 3 | 2 | supex | ⊢ sup ( 𝐿 , ℝ* , < ) ∈ V |
| 4 | reex | ⊢ ℝ ∈ V | |
| 5 | ovex | ⊢ ( 0 [,] +∞ ) ∈ V | |
| 6 | breq2 | ⊢ ( 𝑓 = 𝐹 → ( 𝑔 ∘r ≤ 𝑓 ↔ 𝑔 ∘r ≤ 𝐹 ) ) | |
| 7 | 6 | anbi1d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) ↔ ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) ) ) |
| 8 | 7 | rexbidv | ⊢ ( 𝑓 = 𝐹 → ( ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) ↔ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) ) ) |
| 9 | 8 | abbidv | ⊢ ( 𝑓 = 𝐹 → { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } = { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } ) |
| 10 | 9 1 | eqtr4di | ⊢ ( 𝑓 = 𝐹 → { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } = 𝐿 ) |
| 11 | 10 | supeq1d | ⊢ ( 𝑓 = 𝐹 → sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) = sup ( 𝐿 , ℝ* , < ) ) |
| 12 | df-itg2 | ⊢ ∫2 = ( 𝑓 ∈ ( ( 0 [,] +∞ ) ↑m ℝ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) ) | |
| 13 | 3 4 5 11 12 | fvmptmap | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ 𝐹 ) = sup ( 𝐿 , ℝ* , < ) ) |