This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Approximate equality of integrals. If F = G for almost all x , then S.2 F = S.2 G . (Contributed by Mario Carneiro, 12-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg2lea.1 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) | |
| itg2lea.2 | ⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) | ||
| itg2lea.3 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | ||
| itg2lea.4 | ⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) = 0 ) | ||
| itg2eqa.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | ||
| Assertion | itg2eqa | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) = ( ∫2 ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2lea.1 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) | |
| 2 | itg2lea.2 | ⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) | |
| 3 | itg2lea.3 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 4 | itg2lea.4 | ⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) = 0 ) | |
| 5 | itg2eqa.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 6 | itg2cl | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) | |
| 7 | 1 6 | syl | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ∈ ℝ* ) |
| 8 | itg2cl | ⊢ ( 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ 𝐺 ) ∈ ℝ* ) | |
| 9 | 2 8 | syl | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐺 ) ∈ ℝ* ) |
| 10 | iccssxr | ⊢ ( 0 [,] +∞ ) ⊆ ℝ* | |
| 11 | eldifi | ⊢ ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) → 𝑥 ∈ ℝ ) | |
| 12 | ffvelcdm | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) | |
| 13 | 1 11 12 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) |
| 14 | 10 13 | sselid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) |
| 15 | 14 | xrleidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 16 | 15 5 | breqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
| 17 | 1 2 3 4 16 | itg2lea | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ≤ ( ∫2 ‘ 𝐺 ) ) |
| 18 | 5 15 | eqbrtrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 19 | 2 1 3 4 18 | itg2lea | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐺 ) ≤ ( ∫2 ‘ 𝐹 ) ) |
| 20 | 7 9 17 19 | xrletrid | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) = ( ∫2 ‘ 𝐺 ) ) |