This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism of simple pseudographs is a bijection between their vertices which induces a bijection between their edges. (Contributed by AV, 21-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isusgrim.v | |- V = ( Vtx ` G ) |
|
| isusgrim.w | |- W = ( Vtx ` H ) |
||
| isusgrim.e | |- E = ( Edg ` G ) |
||
| isusgrim.d | |- D = ( Edg ` H ) |
||
| isuspgrim0lem.i | |- I = ( iEdg ` G ) |
||
| isuspgrim0lem.j | |- J = ( iEdg ` H ) |
||
| isuspgrim0lem.m | |- M = ( x e. E |-> ( F " x ) ) |
||
| isuspgrim0lem.n | |- N = ( x e. dom I |-> ( `' J ` ( M ` ( I ` x ) ) ) ) |
||
| Assertion | isuspgrim0lem | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) -> ( N : dom I -1-1-onto-> dom J /\ A. i e. dom I ( J ` ( N ` i ) ) = ( F " ( I ` i ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isusgrim.v | |- V = ( Vtx ` G ) |
|
| 2 | isusgrim.w | |- W = ( Vtx ` H ) |
|
| 3 | isusgrim.e | |- E = ( Edg ` G ) |
|
| 4 | isusgrim.d | |- D = ( Edg ` H ) |
|
| 5 | isuspgrim0lem.i | |- I = ( iEdg ` G ) |
|
| 6 | isuspgrim0lem.j | |- J = ( iEdg ` H ) |
|
| 7 | isuspgrim0lem.m | |- M = ( x e. E |-> ( F " x ) ) |
|
| 8 | isuspgrim0lem.n | |- N = ( x e. dom I |-> ( `' J ` ( M ` ( I ` x ) ) ) ) |
|
| 9 | 6 | uspgrf1oedg | |- ( H e. USPGraph -> J : dom J -1-1-onto-> ( Edg ` H ) ) |
| 10 | 9 | 3ad2ant2 | |- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) -> J : dom J -1-1-onto-> ( Edg ` H ) ) |
| 11 | 10 | ad2antrr | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) -> J : dom J -1-1-onto-> ( Edg ` H ) ) |
| 12 | f1of | |- ( M : E -1-1-onto-> D -> M : E --> D ) |
|
| 13 | 12 | adantl | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) -> M : E --> D ) |
| 14 | 13 | adantr | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ x e. dom I ) -> M : E --> D ) |
| 15 | uspgruhgr | |- ( G e. USPGraph -> G e. UHGraph ) |
|
| 16 | 5 | uhgrfun | |- ( G e. UHGraph -> Fun I ) |
| 17 | 15 16 | syl | |- ( G e. USPGraph -> Fun I ) |
| 18 | edgval | |- ( Edg ` G ) = ran ( iEdg ` G ) |
|
| 19 | 5 | eqcomi | |- ( iEdg ` G ) = I |
| 20 | 19 | rneqi | |- ran ( iEdg ` G ) = ran I |
| 21 | 3 18 20 | 3eqtri | |- E = ran I |
| 22 | feq3 | |- ( E = ran I -> ( I : dom I --> E <-> I : dom I --> ran I ) ) |
|
| 23 | 21 22 | ax-mp | |- ( I : dom I --> E <-> I : dom I --> ran I ) |
| 24 | fdmrn | |- ( Fun I <-> I : dom I --> ran I ) |
|
| 25 | 23 24 | bitr4i | |- ( I : dom I --> E <-> Fun I ) |
| 26 | 17 25 | sylibr | |- ( G e. USPGraph -> I : dom I --> E ) |
| 27 | 26 | 3ad2ant1 | |- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) -> I : dom I --> E ) |
| 28 | 27 | ad2antrr | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) -> I : dom I --> E ) |
| 29 | 28 | ffvelcdmda | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ x e. dom I ) -> ( I ` x ) e. E ) |
| 30 | 14 29 | ffvelcdmd | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ x e. dom I ) -> ( M ` ( I ` x ) ) e. D ) |
| 31 | 30 4 | eleqtrdi | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ x e. dom I ) -> ( M ` ( I ` x ) ) e. ( Edg ` H ) ) |
| 32 | f1ocnvdm | |- ( ( J : dom J -1-1-onto-> ( Edg ` H ) /\ ( M ` ( I ` x ) ) e. ( Edg ` H ) ) -> ( `' J ` ( M ` ( I ` x ) ) ) e. dom J ) |
|
| 33 | 11 31 32 | syl2an2r | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ x e. dom I ) -> ( `' J ` ( M ` ( I ` x ) ) ) e. dom J ) |
| 34 | 33 | ralrimiva | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) -> A. x e. dom I ( `' J ` ( M ` ( I ` x ) ) ) e. dom J ) |
| 35 | 2fveq3 | |- ( x = ( `' I ` ( `' M ` ( J ` i ) ) ) -> ( M ` ( I ` x ) ) = ( M ` ( I ` ( `' I ` ( `' M ` ( J ` i ) ) ) ) ) ) |
|
| 36 | 35 | eqeq2d | |- ( x = ( `' I ` ( `' M ` ( J ` i ) ) ) -> ( ( J ` i ) = ( M ` ( I ` x ) ) <-> ( J ` i ) = ( M ` ( I ` ( `' I ` ( `' M ` ( J ` i ) ) ) ) ) ) ) |
| 37 | 5 | uspgrf1oedg | |- ( G e. USPGraph -> I : dom I -1-1-onto-> ( Edg ` G ) ) |
| 38 | 37 | 3ad2ant1 | |- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) -> I : dom I -1-1-onto-> ( Edg ` G ) ) |
| 39 | 38 | ad2antrr | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) -> I : dom I -1-1-onto-> ( Edg ` G ) ) |
| 40 | f1oeq2 | |- ( E = ( Edg ` G ) -> ( M : E -1-1-onto-> D <-> M : ( Edg ` G ) -1-1-onto-> D ) ) |
|
| 41 | 3 40 | ax-mp | |- ( M : E -1-1-onto-> D <-> M : ( Edg ` G ) -1-1-onto-> D ) |
| 42 | 41 | biimpi | |- ( M : E -1-1-onto-> D -> M : ( Edg ` G ) -1-1-onto-> D ) |
| 43 | 42 | adantl | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) -> M : ( Edg ` G ) -1-1-onto-> D ) |
| 44 | f1oeq3 | |- ( D = ( Edg ` H ) -> ( J : dom J -1-1-onto-> D <-> J : dom J -1-1-onto-> ( Edg ` H ) ) ) |
|
| 45 | 4 44 | ax-mp | |- ( J : dom J -1-1-onto-> D <-> J : dom J -1-1-onto-> ( Edg ` H ) ) |
| 46 | 11 45 | sylibr | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) -> J : dom J -1-1-onto-> D ) |
| 47 | f1of | |- ( J : dom J -1-1-onto-> D -> J : dom J --> D ) |
|
| 48 | 46 47 | syl | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) -> J : dom J --> D ) |
| 49 | 48 | ffvelcdmda | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom J ) -> ( J ` i ) e. D ) |
| 50 | f1ocnvdm | |- ( ( M : ( Edg ` G ) -1-1-onto-> D /\ ( J ` i ) e. D ) -> ( `' M ` ( J ` i ) ) e. ( Edg ` G ) ) |
|
| 51 | 43 49 50 | syl2an2r | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom J ) -> ( `' M ` ( J ` i ) ) e. ( Edg ` G ) ) |
| 52 | f1ocnvdm | |- ( ( I : dom I -1-1-onto-> ( Edg ` G ) /\ ( `' M ` ( J ` i ) ) e. ( Edg ` G ) ) -> ( `' I ` ( `' M ` ( J ` i ) ) ) e. dom I ) |
|
| 53 | 39 51 52 | syl2an2r | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom J ) -> ( `' I ` ( `' M ` ( J ` i ) ) ) e. dom I ) |
| 54 | simpll1 | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) -> G e. USPGraph ) |
|
| 55 | 54 37 | syl | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) -> I : dom I -1-1-onto-> ( Edg ` G ) ) |
| 56 | simpr | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) -> M : E -1-1-onto-> D ) |
|
| 57 | f1ocnvdm | |- ( ( M : E -1-1-onto-> D /\ ( J ` i ) e. D ) -> ( `' M ` ( J ` i ) ) e. E ) |
|
| 58 | 56 49 57 | syl2an2r | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom J ) -> ( `' M ` ( J ` i ) ) e. E ) |
| 59 | 58 3 | eleqtrdi | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom J ) -> ( `' M ` ( J ` i ) ) e. ( Edg ` G ) ) |
| 60 | f1ocnvfv2 | |- ( ( I : dom I -1-1-onto-> ( Edg ` G ) /\ ( `' M ` ( J ` i ) ) e. ( Edg ` G ) ) -> ( I ` ( `' I ` ( `' M ` ( J ` i ) ) ) ) = ( `' M ` ( J ` i ) ) ) |
|
| 61 | 55 59 60 | syl2an2r | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom J ) -> ( I ` ( `' I ` ( `' M ` ( J ` i ) ) ) ) = ( `' M ` ( J ` i ) ) ) |
| 62 | 61 | fveq2d | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom J ) -> ( M ` ( I ` ( `' I ` ( `' M ` ( J ` i ) ) ) ) ) = ( M ` ( `' M ` ( J ` i ) ) ) ) |
| 63 | f1ocnvfv2 | |- ( ( M : E -1-1-onto-> D /\ ( J ` i ) e. D ) -> ( M ` ( `' M ` ( J ` i ) ) ) = ( J ` i ) ) |
|
| 64 | 56 49 63 | syl2an2r | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom J ) -> ( M ` ( `' M ` ( J ` i ) ) ) = ( J ` i ) ) |
| 65 | 62 64 | eqtr2d | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom J ) -> ( J ` i ) = ( M ` ( I ` ( `' I ` ( `' M ` ( J ` i ) ) ) ) ) ) |
| 66 | 36 53 65 | rspcedvdw | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom J ) -> E. x e. dom I ( J ` i ) = ( M ` ( I ` x ) ) ) |
| 67 | eqtr2 | |- ( ( ( J ` i ) = ( M ` ( I ` x ) ) /\ ( J ` i ) = ( M ` ( I ` y ) ) ) -> ( M ` ( I ` x ) ) = ( M ` ( I ` y ) ) ) |
|
| 68 | f1of1 | |- ( M : E -1-1-onto-> D -> M : E -1-1-> D ) |
|
| 69 | 68 | adantl | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) -> M : E -1-1-> D ) |
| 70 | 69 | adantr | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom J ) -> M : E -1-1-> D ) |
| 71 | 5 | iedgedg | |- ( ( Fun I /\ x e. dom I ) -> ( I ` x ) e. ( Edg ` G ) ) |
| 72 | 17 71 | sylan | |- ( ( G e. USPGraph /\ x e. dom I ) -> ( I ` x ) e. ( Edg ` G ) ) |
| 73 | 72 3 | eleqtrrdi | |- ( ( G e. USPGraph /\ x e. dom I ) -> ( I ` x ) e. E ) |
| 74 | 73 | ex | |- ( G e. USPGraph -> ( x e. dom I -> ( I ` x ) e. E ) ) |
| 75 | 5 | iedgedg | |- ( ( Fun I /\ y e. dom I ) -> ( I ` y ) e. ( Edg ` G ) ) |
| 76 | 17 75 | sylan | |- ( ( G e. USPGraph /\ y e. dom I ) -> ( I ` y ) e. ( Edg ` G ) ) |
| 77 | 76 3 | eleqtrrdi | |- ( ( G e. USPGraph /\ y e. dom I ) -> ( I ` y ) e. E ) |
| 78 | 77 | ex | |- ( G e. USPGraph -> ( y e. dom I -> ( I ` y ) e. E ) ) |
| 79 | 74 78 | anim12d | |- ( G e. USPGraph -> ( ( x e. dom I /\ y e. dom I ) -> ( ( I ` x ) e. E /\ ( I ` y ) e. E ) ) ) |
| 80 | 79 | 3ad2ant1 | |- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) -> ( ( x e. dom I /\ y e. dom I ) -> ( ( I ` x ) e. E /\ ( I ` y ) e. E ) ) ) |
| 81 | 80 | ad3antrrr | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom J ) -> ( ( x e. dom I /\ y e. dom I ) -> ( ( I ` x ) e. E /\ ( I ` y ) e. E ) ) ) |
| 82 | 81 | imp | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom J ) /\ ( x e. dom I /\ y e. dom I ) ) -> ( ( I ` x ) e. E /\ ( I ` y ) e. E ) ) |
| 83 | f1fveq | |- ( ( M : E -1-1-> D /\ ( ( I ` x ) e. E /\ ( I ` y ) e. E ) ) -> ( ( M ` ( I ` x ) ) = ( M ` ( I ` y ) ) <-> ( I ` x ) = ( I ` y ) ) ) |
|
| 84 | 70 82 83 | syl2an2r | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom J ) /\ ( x e. dom I /\ y e. dom I ) ) -> ( ( M ` ( I ` x ) ) = ( M ` ( I ` y ) ) <-> ( I ` x ) = ( I ` y ) ) ) |
| 85 | f1of1 | |- ( I : dom I -1-1-onto-> ( Edg ` G ) -> I : dom I -1-1-> ( Edg ` G ) ) |
|
| 86 | 37 85 | syl | |- ( G e. USPGraph -> I : dom I -1-1-> ( Edg ` G ) ) |
| 87 | 86 | 3ad2ant1 | |- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) -> I : dom I -1-1-> ( Edg ` G ) ) |
| 88 | 87 | ad3antrrr | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom J ) -> I : dom I -1-1-> ( Edg ` G ) ) |
| 89 | f1veqaeq | |- ( ( I : dom I -1-1-> ( Edg ` G ) /\ ( x e. dom I /\ y e. dom I ) ) -> ( ( I ` x ) = ( I ` y ) -> x = y ) ) |
|
| 90 | 88 89 | sylan | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom J ) /\ ( x e. dom I /\ y e. dom I ) ) -> ( ( I ` x ) = ( I ` y ) -> x = y ) ) |
| 91 | 84 90 | sylbid | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom J ) /\ ( x e. dom I /\ y e. dom I ) ) -> ( ( M ` ( I ` x ) ) = ( M ` ( I ` y ) ) -> x = y ) ) |
| 92 | 67 91 | syl5 | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom J ) /\ ( x e. dom I /\ y e. dom I ) ) -> ( ( ( J ` i ) = ( M ` ( I ` x ) ) /\ ( J ` i ) = ( M ` ( I ` y ) ) ) -> x = y ) ) |
| 93 | 92 | ralrimivva | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom J ) -> A. x e. dom I A. y e. dom I ( ( ( J ` i ) = ( M ` ( I ` x ) ) /\ ( J ` i ) = ( M ` ( I ` y ) ) ) -> x = y ) ) |
| 94 | 2fveq3 | |- ( x = y -> ( M ` ( I ` x ) ) = ( M ` ( I ` y ) ) ) |
|
| 95 | 94 | eqeq2d | |- ( x = y -> ( ( J ` i ) = ( M ` ( I ` x ) ) <-> ( J ` i ) = ( M ` ( I ` y ) ) ) ) |
| 96 | 95 | reu4 | |- ( E! x e. dom I ( J ` i ) = ( M ` ( I ` x ) ) <-> ( E. x e. dom I ( J ` i ) = ( M ` ( I ` x ) ) /\ A. x e. dom I A. y e. dom I ( ( ( J ` i ) = ( M ` ( I ` x ) ) /\ ( J ` i ) = ( M ` ( I ` y ) ) ) -> x = y ) ) ) |
| 97 | 66 93 96 | sylanbrc | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom J ) -> E! x e. dom I ( J ` i ) = ( M ` ( I ` x ) ) ) |
| 98 | 10 | ad3antrrr | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom J ) -> J : dom J -1-1-onto-> ( Edg ` H ) ) |
| 99 | 13 | ad2antrr | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom J ) /\ x e. dom I ) -> M : E --> D ) |
| 100 | 27 | ad3antrrr | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom J ) -> I : dom I --> E ) |
| 101 | 100 | ffvelcdmda | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom J ) /\ x e. dom I ) -> ( I ` x ) e. E ) |
| 102 | 99 101 | ffvelcdmd | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom J ) /\ x e. dom I ) -> ( M ` ( I ` x ) ) e. D ) |
| 103 | 102 4 | eleqtrdi | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom J ) /\ x e. dom I ) -> ( M ` ( I ` x ) ) e. ( Edg ` H ) ) |
| 104 | f1ocnvfv2 | |- ( ( J : dom J -1-1-onto-> ( Edg ` H ) /\ ( M ` ( I ` x ) ) e. ( Edg ` H ) ) -> ( J ` ( `' J ` ( M ` ( I ` x ) ) ) ) = ( M ` ( I ` x ) ) ) |
|
| 105 | 98 103 104 | syl2an2r | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom J ) /\ x e. dom I ) -> ( J ` ( `' J ` ( M ` ( I ` x ) ) ) ) = ( M ` ( I ` x ) ) ) |
| 106 | 105 | eqeq2d | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom J ) /\ x e. dom I ) -> ( ( J ` i ) = ( J ` ( `' J ` ( M ` ( I ` x ) ) ) ) <-> ( J ` i ) = ( M ` ( I ` x ) ) ) ) |
| 107 | 106 | reubidva | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom J ) -> ( E! x e. dom I ( J ` i ) = ( J ` ( `' J ` ( M ` ( I ` x ) ) ) ) <-> E! x e. dom I ( J ` i ) = ( M ` ( I ` x ) ) ) ) |
| 108 | 97 107 | mpbird | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom J ) -> E! x e. dom I ( J ` i ) = ( J ` ( `' J ` ( M ` ( I ` x ) ) ) ) ) |
| 109 | 11 | ad2antrr | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom J ) /\ x e. dom I ) -> J : dom J -1-1-onto-> ( Edg ` H ) ) |
| 110 | f1of1 | |- ( J : dom J -1-1-onto-> ( Edg ` H ) -> J : dom J -1-1-> ( Edg ` H ) ) |
|
| 111 | 109 110 | syl | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom J ) /\ x e. dom I ) -> J : dom J -1-1-> ( Edg ` H ) ) |
| 112 | simplr | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom J ) /\ x e. dom I ) -> i e. dom J ) |
|
| 113 | 33 | adantlr | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom J ) /\ x e. dom I ) -> ( `' J ` ( M ` ( I ` x ) ) ) e. dom J ) |
| 114 | f1fveq | |- ( ( J : dom J -1-1-> ( Edg ` H ) /\ ( i e. dom J /\ ( `' J ` ( M ` ( I ` x ) ) ) e. dom J ) ) -> ( ( J ` i ) = ( J ` ( `' J ` ( M ` ( I ` x ) ) ) ) <-> i = ( `' J ` ( M ` ( I ` x ) ) ) ) ) |
|
| 115 | 114 | bicomd | |- ( ( J : dom J -1-1-> ( Edg ` H ) /\ ( i e. dom J /\ ( `' J ` ( M ` ( I ` x ) ) ) e. dom J ) ) -> ( i = ( `' J ` ( M ` ( I ` x ) ) ) <-> ( J ` i ) = ( J ` ( `' J ` ( M ` ( I ` x ) ) ) ) ) ) |
| 116 | 111 112 113 115 | syl12anc | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom J ) /\ x e. dom I ) -> ( i = ( `' J ` ( M ` ( I ` x ) ) ) <-> ( J ` i ) = ( J ` ( `' J ` ( M ` ( I ` x ) ) ) ) ) ) |
| 117 | 116 | reubidva | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom J ) -> ( E! x e. dom I i = ( `' J ` ( M ` ( I ` x ) ) ) <-> E! x e. dom I ( J ` i ) = ( J ` ( `' J ` ( M ` ( I ` x ) ) ) ) ) ) |
| 118 | 108 117 | mpbird | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom J ) -> E! x e. dom I i = ( `' J ` ( M ` ( I ` x ) ) ) ) |
| 119 | 118 | ralrimiva | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) -> A. i e. dom J E! x e. dom I i = ( `' J ` ( M ` ( I ` x ) ) ) ) |
| 120 | 8 | f1ompt | |- ( N : dom I -1-1-onto-> dom J <-> ( A. x e. dom I ( `' J ` ( M ` ( I ` x ) ) ) e. dom J /\ A. i e. dom J E! x e. dom I i = ( `' J ` ( M ` ( I ` x ) ) ) ) ) |
| 121 | 34 119 120 | sylanbrc | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) -> N : dom I -1-1-onto-> dom J ) |
| 122 | 2fveq3 | |- ( x = i -> ( M ` ( I ` x ) ) = ( M ` ( I ` i ) ) ) |
|
| 123 | 122 | fveq2d | |- ( x = i -> ( `' J ` ( M ` ( I ` x ) ) ) = ( `' J ` ( M ` ( I ` i ) ) ) ) |
| 124 | 123 | adantl | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom I ) /\ x = i ) -> ( `' J ` ( M ` ( I ` x ) ) ) = ( `' J ` ( M ` ( I ` i ) ) ) ) |
| 125 | simpr | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom I ) -> i e. dom I ) |
|
| 126 | fvexd | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom I ) -> ( `' J ` ( M ` ( I ` i ) ) ) e. _V ) |
|
| 127 | 8 124 125 126 | fvmptd2 | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom I ) -> ( N ` i ) = ( `' J ` ( M ` ( I ` i ) ) ) ) |
| 128 | 127 | fveq2d | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom I ) -> ( J ` ( N ` i ) ) = ( J ` ( `' J ` ( M ` ( I ` i ) ) ) ) ) |
| 129 | 13 | adantr | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom I ) -> M : E --> D ) |
| 130 | 28 | ffvelcdmda | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom I ) -> ( I ` i ) e. E ) |
| 131 | 129 130 | ffvelcdmd | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom I ) -> ( M ` ( I ` i ) ) e. D ) |
| 132 | 131 4 | eleqtrdi | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom I ) -> ( M ` ( I ` i ) ) e. ( Edg ` H ) ) |
| 133 | f1ocnvfv2 | |- ( ( J : dom J -1-1-onto-> ( Edg ` H ) /\ ( M ` ( I ` i ) ) e. ( Edg ` H ) ) -> ( J ` ( `' J ` ( M ` ( I ` i ) ) ) ) = ( M ` ( I ` i ) ) ) |
|
| 134 | 11 132 133 | syl2an2r | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom I ) -> ( J ` ( `' J ` ( M ` ( I ` i ) ) ) ) = ( M ` ( I ` i ) ) ) |
| 135 | simpr | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom I ) /\ x = ( I ` i ) ) -> x = ( I ` i ) ) |
|
| 136 | 135 | imaeq2d | |- ( ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom I ) /\ x = ( I ` i ) ) -> ( F " x ) = ( F " ( I ` i ) ) ) |
| 137 | simp3 | |- ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) -> F e. X ) |
|
| 138 | 137 | ad3antrrr | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom I ) -> F e. X ) |
| 139 | 138 | imaexd | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom I ) -> ( F " ( I ` i ) ) e. _V ) |
| 140 | 7 136 130 139 | fvmptd2 | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom I ) -> ( M ` ( I ` i ) ) = ( F " ( I ` i ) ) ) |
| 141 | 128 134 140 | 3eqtrd | |- ( ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) /\ i e. dom I ) -> ( J ` ( N ` i ) ) = ( F " ( I ` i ) ) ) |
| 142 | 141 | ralrimiva | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) -> A. i e. dom I ( J ` ( N ` i ) ) = ( F " ( I ` i ) ) ) |
| 143 | 121 142 | jca | |- ( ( ( ( G e. USPGraph /\ H e. USPGraph /\ F e. X ) /\ F : V -1-1-onto-> W ) /\ M : E -1-1-onto-> D ) -> ( N : dom I -1-1-onto-> dom J /\ A. i e. dom I ( J ` ( N ` i ) ) = ( F " ( I ` i ) ) ) ) |