This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An induced subgraph of a hypergraph is a hypergraph. (Contributed by AV, 13-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isubgrvtx.v | |- V = ( Vtx ` G ) |
|
| Assertion | isubgruhgr | |- ( ( G e. UHGraph /\ S C_ V ) -> ( G ISubGr S ) e. UHGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isubgrvtx.v | |- V = ( Vtx ` G ) |
|
| 2 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 3 | 1 2 | uhgrf | |- ( G e. UHGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) ) |
| 4 | 3 | adantr | |- ( ( G e. UHGraph /\ S C_ V ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) ) |
| 5 | dmresss | |- dom ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) C_ dom ( iEdg ` G ) |
|
| 6 | 5 | a1i | |- ( ( G e. UHGraph /\ S C_ V ) -> dom ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) C_ dom ( iEdg ` G ) ) |
| 7 | imadmres | |- ( ( iEdg ` G ) " dom ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) ) = ( ( iEdg ` G ) " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) |
|
| 8 | ffvelcdm | |- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) /\ y e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` y ) e. ( ~P V \ { (/) } ) ) |
|
| 9 | eldifsni | |- ( ( ( iEdg ` G ) ` y ) e. ( ~P V \ { (/) } ) -> ( ( iEdg ` G ) ` y ) =/= (/) ) |
|
| 10 | 8 9 | syl | |- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) /\ y e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` y ) =/= (/) ) |
| 11 | 10 | ex | |- ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) -> ( y e. dom ( iEdg ` G ) -> ( ( iEdg ` G ) ` y ) =/= (/) ) ) |
| 12 | 3 11 | syl | |- ( G e. UHGraph -> ( y e. dom ( iEdg ` G ) -> ( ( iEdg ` G ) ` y ) =/= (/) ) ) |
| 13 | 12 | adantr | |- ( ( G e. UHGraph /\ S C_ V ) -> ( y e. dom ( iEdg ` G ) -> ( ( iEdg ` G ) ` y ) =/= (/) ) ) |
| 14 | 13 | imp | |- ( ( ( G e. UHGraph /\ S C_ V ) /\ y e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` y ) =/= (/) ) |
| 15 | fvexd | |- ( ( ( iEdg ` G ) ` y ) C_ S -> ( ( iEdg ` G ) ` y ) e. _V ) |
|
| 16 | id | |- ( ( ( iEdg ` G ) ` y ) C_ S -> ( ( iEdg ` G ) ` y ) C_ S ) |
|
| 17 | 15 16 | elpwd | |- ( ( ( iEdg ` G ) ` y ) C_ S -> ( ( iEdg ` G ) ` y ) e. ~P S ) |
| 18 | 14 17 | anim12ci | |- ( ( ( ( G e. UHGraph /\ S C_ V ) /\ y e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` G ) ` y ) C_ S ) -> ( ( ( iEdg ` G ) ` y ) e. ~P S /\ ( ( iEdg ` G ) ` y ) =/= (/) ) ) |
| 19 | eldifsn | |- ( ( ( iEdg ` G ) ` y ) e. ( ~P S \ { (/) } ) <-> ( ( ( iEdg ` G ) ` y ) e. ~P S /\ ( ( iEdg ` G ) ` y ) =/= (/) ) ) |
|
| 20 | 18 19 | sylibr | |- ( ( ( ( G e. UHGraph /\ S C_ V ) /\ y e. dom ( iEdg ` G ) ) /\ ( ( iEdg ` G ) ` y ) C_ S ) -> ( ( iEdg ` G ) ` y ) e. ( ~P S \ { (/) } ) ) |
| 21 | 20 | ex | |- ( ( ( G e. UHGraph /\ S C_ V ) /\ y e. dom ( iEdg ` G ) ) -> ( ( ( iEdg ` G ) ` y ) C_ S -> ( ( iEdg ` G ) ` y ) e. ( ~P S \ { (/) } ) ) ) |
| 22 | 21 | ralrimiva | |- ( ( G e. UHGraph /\ S C_ V ) -> A. y e. dom ( iEdg ` G ) ( ( ( iEdg ` G ) ` y ) C_ S -> ( ( iEdg ` G ) ` y ) e. ( ~P S \ { (/) } ) ) ) |
| 23 | fveq2 | |- ( x = y -> ( ( iEdg ` G ) ` x ) = ( ( iEdg ` G ) ` y ) ) |
|
| 24 | 23 | sseq1d | |- ( x = y -> ( ( ( iEdg ` G ) ` x ) C_ S <-> ( ( iEdg ` G ) ` y ) C_ S ) ) |
| 25 | 24 | ralrab | |- ( A. y e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ( ( iEdg ` G ) ` y ) e. ( ~P S \ { (/) } ) <-> A. y e. dom ( iEdg ` G ) ( ( ( iEdg ` G ) ` y ) C_ S -> ( ( iEdg ` G ) ` y ) e. ( ~P S \ { (/) } ) ) ) |
| 26 | 22 25 | sylibr | |- ( ( G e. UHGraph /\ S C_ V ) -> A. y e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ( ( iEdg ` G ) ` y ) e. ( ~P S \ { (/) } ) ) |
| 27 | ffun | |- ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) -> Fun ( iEdg ` G ) ) |
|
| 28 | ssrab2 | |- { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } C_ dom ( iEdg ` G ) |
|
| 29 | 27 28 | jctir | |- ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) -> ( Fun ( iEdg ` G ) /\ { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } C_ dom ( iEdg ` G ) ) ) |
| 30 | 3 29 | syl | |- ( G e. UHGraph -> ( Fun ( iEdg ` G ) /\ { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } C_ dom ( iEdg ` G ) ) ) |
| 31 | 30 | adantr | |- ( ( G e. UHGraph /\ S C_ V ) -> ( Fun ( iEdg ` G ) /\ { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } C_ dom ( iEdg ` G ) ) ) |
| 32 | funimass4 | |- ( ( Fun ( iEdg ` G ) /\ { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } C_ dom ( iEdg ` G ) ) -> ( ( ( iEdg ` G ) " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) C_ ( ~P S \ { (/) } ) <-> A. y e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ( ( iEdg ` G ) ` y ) e. ( ~P S \ { (/) } ) ) ) |
|
| 33 | 31 32 | syl | |- ( ( G e. UHGraph /\ S C_ V ) -> ( ( ( iEdg ` G ) " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) C_ ( ~P S \ { (/) } ) <-> A. y e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ( ( iEdg ` G ) ` y ) e. ( ~P S \ { (/) } ) ) ) |
| 34 | 26 33 | mpbird | |- ( ( G e. UHGraph /\ S C_ V ) -> ( ( iEdg ` G ) " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) C_ ( ~P S \ { (/) } ) ) |
| 35 | 7 34 | eqsstrid | |- ( ( G e. UHGraph /\ S C_ V ) -> ( ( iEdg ` G ) " dom ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) ) C_ ( ~P S \ { (/) } ) ) |
| 36 | 4 6 35 | fssrescdmd | |- ( ( G e. UHGraph /\ S C_ V ) -> ( ( iEdg ` G ) |` dom ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) ) : dom ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) --> ( ~P S \ { (/) } ) ) |
| 37 | resdmres | |- ( ( iEdg ` G ) |` dom ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) ) = ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) |
|
| 38 | 37 | eqcomi | |- ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) = ( ( iEdg ` G ) |` dom ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) ) |
| 39 | 38 | feq1i | |- ( ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) : dom ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) --> ( ~P S \ { (/) } ) <-> ( ( iEdg ` G ) |` dom ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) ) : dom ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) --> ( ~P S \ { (/) } ) ) |
| 40 | 36 39 | sylibr | |- ( ( G e. UHGraph /\ S C_ V ) -> ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) : dom ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) --> ( ~P S \ { (/) } ) ) |
| 41 | 1 2 | isubgriedg | |- ( ( G e. UHGraph /\ S C_ V ) -> ( iEdg ` ( G ISubGr S ) ) = ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) ) |
| 42 | 41 | dmeqd | |- ( ( G e. UHGraph /\ S C_ V ) -> dom ( iEdg ` ( G ISubGr S ) ) = dom ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) ) |
| 43 | 1 | isubgrvtx | |- ( ( G e. UHGraph /\ S C_ V ) -> ( Vtx ` ( G ISubGr S ) ) = S ) |
| 44 | 43 | pweqd | |- ( ( G e. UHGraph /\ S C_ V ) -> ~P ( Vtx ` ( G ISubGr S ) ) = ~P S ) |
| 45 | 44 | difeq1d | |- ( ( G e. UHGraph /\ S C_ V ) -> ( ~P ( Vtx ` ( G ISubGr S ) ) \ { (/) } ) = ( ~P S \ { (/) } ) ) |
| 46 | 41 42 45 | feq123d | |- ( ( G e. UHGraph /\ S C_ V ) -> ( ( iEdg ` ( G ISubGr S ) ) : dom ( iEdg ` ( G ISubGr S ) ) --> ( ~P ( Vtx ` ( G ISubGr S ) ) \ { (/) } ) <-> ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) : dom ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) --> ( ~P S \ { (/) } ) ) ) |
| 47 | 40 46 | mpbird | |- ( ( G e. UHGraph /\ S C_ V ) -> ( iEdg ` ( G ISubGr S ) ) : dom ( iEdg ` ( G ISubGr S ) ) --> ( ~P ( Vtx ` ( G ISubGr S ) ) \ { (/) } ) ) |
| 48 | ovexd | |- ( ( G e. UHGraph /\ S C_ V ) -> ( G ISubGr S ) e. _V ) |
|
| 49 | eqid | |- ( Vtx ` ( G ISubGr S ) ) = ( Vtx ` ( G ISubGr S ) ) |
|
| 50 | eqid | |- ( iEdg ` ( G ISubGr S ) ) = ( iEdg ` ( G ISubGr S ) ) |
|
| 51 | 49 50 | isuhgr | |- ( ( G ISubGr S ) e. _V -> ( ( G ISubGr S ) e. UHGraph <-> ( iEdg ` ( G ISubGr S ) ) : dom ( iEdg ` ( G ISubGr S ) ) --> ( ~P ( Vtx ` ( G ISubGr S ) ) \ { (/) } ) ) ) |
| 52 | 48 51 | syl | |- ( ( G e. UHGraph /\ S C_ V ) -> ( ( G ISubGr S ) e. UHGraph <-> ( iEdg ` ( G ISubGr S ) ) : dom ( iEdg ` ( G ISubGr S ) ) --> ( ~P ( Vtx ` ( G ISubGr S ) ) \ { (/) } ) ) ) |
| 53 | 47 52 | mpbird | |- ( ( G e. UHGraph /\ S C_ V ) -> ( G ISubGr S ) e. UHGraph ) |