This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An induced subgraph of a hypergraph is a subgraph of the hypergraph. (Contributed by AV, 14-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isubgrvtx.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | isubgrsubgr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐺 ISubGr 𝑆 ) SubGraph 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isubgrvtx.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | 1 | isubgrvtx | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( Vtx ‘ ( 𝐺 ISubGr 𝑆 ) ) = 𝑆 ) |
| 3 | simpr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ 𝑉 ) | |
| 4 | 2 3 | eqsstrd | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( Vtx ‘ ( 𝐺 ISubGr 𝑆 ) ) ⊆ 𝑉 ) |
| 5 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 6 | 1 5 | isubgriedg | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) = ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) ) |
| 7 | resss | ⊢ ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑆 } ) ⊆ ( iEdg ‘ 𝐺 ) | |
| 8 | 6 7 | eqsstrdi | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) ⊆ ( iEdg ‘ 𝐺 ) ) |
| 9 | simpl | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → 𝐺 ∈ UHGraph ) | |
| 10 | 5 | uhgrfun | ⊢ ( 𝐺 ∈ UHGraph → Fun ( iEdg ‘ 𝐺 ) ) |
| 11 | 10 | adantr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → Fun ( iEdg ‘ 𝐺 ) ) |
| 12 | 1 | isubgruhgr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐺 ISubGr 𝑆 ) ∈ UHGraph ) |
| 13 | eqid | ⊢ ( Vtx ‘ ( 𝐺 ISubGr 𝑆 ) ) = ( Vtx ‘ ( 𝐺 ISubGr 𝑆 ) ) | |
| 14 | eqid | ⊢ ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) = ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) | |
| 15 | 13 1 14 5 | uhgrissubgr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ Fun ( iEdg ‘ 𝐺 ) ∧ ( 𝐺 ISubGr 𝑆 ) ∈ UHGraph ) → ( ( 𝐺 ISubGr 𝑆 ) SubGraph 𝐺 ↔ ( ( Vtx ‘ ( 𝐺 ISubGr 𝑆 ) ) ⊆ 𝑉 ∧ ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) ⊆ ( iEdg ‘ 𝐺 ) ) ) ) |
| 16 | 9 11 12 15 | syl3anc | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( ( 𝐺 ISubGr 𝑆 ) SubGraph 𝐺 ↔ ( ( Vtx ‘ ( 𝐺 ISubGr 𝑆 ) ) ⊆ 𝑉 ∧ ( iEdg ‘ ( 𝐺 ISubGr 𝑆 ) ) ⊆ ( iEdg ‘ 𝐺 ) ) ) ) |
| 17 | 4 8 16 | mpbir2and | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐺 ISubGr 𝑆 ) SubGraph 𝐺 ) |