This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a function to a subclass of its domain as a function with domain and codomain. (Contributed by AV, 13-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fssrescdmd.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| fssrescdmd.c | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) | ||
| fssrescdmd.d | ⊢ ( 𝜑 → ( 𝐹 “ 𝐶 ) ⊆ 𝐷 ) | ||
| Assertion | fssrescdmd | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fssrescdmd.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 2 | fssrescdmd.c | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) | |
| 3 | fssrescdmd.d | ⊢ ( 𝜑 → ( 𝐹 “ 𝐶 ) ⊆ 𝐷 ) | |
| 4 | 1 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 5 | 4 2 | fnssresd | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) Fn 𝐶 ) |
| 6 | resima | ⊢ ( ( 𝐹 ↾ 𝐶 ) “ 𝐶 ) = ( 𝐹 “ 𝐶 ) | |
| 7 | 6 3 | eqsstrid | ⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐶 ) “ 𝐶 ) ⊆ 𝐷 ) |
| 8 | 1 | ffund | ⊢ ( 𝜑 → Fun 𝐹 ) |
| 9 | 8 | funresd | ⊢ ( 𝜑 → Fun ( 𝐹 ↾ 𝐶 ) ) |
| 10 | 1 | fdmd | ⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
| 11 | 2 10 | sseqtrrd | ⊢ ( 𝜑 → 𝐶 ⊆ dom 𝐹 ) |
| 12 | ssdmres | ⊢ ( 𝐶 ⊆ dom 𝐹 ↔ dom ( 𝐹 ↾ 𝐶 ) = 𝐶 ) | |
| 13 | 12 | a1i | ⊢ ( 𝜑 → ( 𝐶 ⊆ dom 𝐹 ↔ dom ( 𝐹 ↾ 𝐶 ) = 𝐶 ) ) |
| 14 | eqcom | ⊢ ( dom ( 𝐹 ↾ 𝐶 ) = 𝐶 ↔ 𝐶 = dom ( 𝐹 ↾ 𝐶 ) ) | |
| 15 | 13 14 | bitrdi | ⊢ ( 𝜑 → ( 𝐶 ⊆ dom 𝐹 ↔ 𝐶 = dom ( 𝐹 ↾ 𝐶 ) ) ) |
| 16 | 11 15 | mpbid | ⊢ ( 𝜑 → 𝐶 = dom ( 𝐹 ↾ 𝐶 ) ) |
| 17 | 16 | eqimssd | ⊢ ( 𝜑 → 𝐶 ⊆ dom ( 𝐹 ↾ 𝐶 ) ) |
| 18 | funimass4 | ⊢ ( ( Fun ( 𝐹 ↾ 𝐶 ) ∧ 𝐶 ⊆ dom ( 𝐹 ↾ 𝐶 ) ) → ( ( ( 𝐹 ↾ 𝐶 ) “ 𝐶 ) ⊆ 𝐷 ↔ ∀ 𝑥 ∈ 𝐶 ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ∈ 𝐷 ) ) | |
| 19 | 9 17 18 | syl2anc | ⊢ ( 𝜑 → ( ( ( 𝐹 ↾ 𝐶 ) “ 𝐶 ) ⊆ 𝐷 ↔ ∀ 𝑥 ∈ 𝐶 ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ∈ 𝐷 ) ) |
| 20 | 7 19 | mpbid | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐶 ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ∈ 𝐷 ) |
| 21 | ffnfv | ⊢ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐷 ↔ ( ( 𝐹 ↾ 𝐶 ) Fn 𝐶 ∧ ∀ 𝑥 ∈ 𝐶 ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ∈ 𝐷 ) ) | |
| 22 | 5 20 21 | sylanbrc | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐷 ) |