This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction to the domain of a restriction. (Contributed by NM, 8-Apr-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resdmres | ⊢ ( 𝐴 ↾ dom ( 𝐴 ↾ 𝐵 ) ) = ( 𝐴 ↾ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | in12 | ⊢ ( 𝐴 ∩ ( ( 𝐵 × V ) ∩ ( dom 𝐴 × V ) ) ) = ( ( 𝐵 × V ) ∩ ( 𝐴 ∩ ( dom 𝐴 × V ) ) ) | |
| 2 | df-res | ⊢ ( 𝐴 ↾ dom 𝐴 ) = ( 𝐴 ∩ ( dom 𝐴 × V ) ) | |
| 3 | resdm2 | ⊢ ( 𝐴 ↾ dom 𝐴 ) = ◡ ◡ 𝐴 | |
| 4 | 2 3 | eqtr3i | ⊢ ( 𝐴 ∩ ( dom 𝐴 × V ) ) = ◡ ◡ 𝐴 |
| 5 | 4 | ineq2i | ⊢ ( ( 𝐵 × V ) ∩ ( 𝐴 ∩ ( dom 𝐴 × V ) ) ) = ( ( 𝐵 × V ) ∩ ◡ ◡ 𝐴 ) |
| 6 | incom | ⊢ ( ( 𝐵 × V ) ∩ ◡ ◡ 𝐴 ) = ( ◡ ◡ 𝐴 ∩ ( 𝐵 × V ) ) | |
| 7 | 1 5 6 | 3eqtri | ⊢ ( 𝐴 ∩ ( ( 𝐵 × V ) ∩ ( dom 𝐴 × V ) ) ) = ( ◡ ◡ 𝐴 ∩ ( 𝐵 × V ) ) |
| 8 | df-res | ⊢ ( 𝐴 ↾ dom ( 𝐴 ↾ 𝐵 ) ) = ( 𝐴 ∩ ( dom ( 𝐴 ↾ 𝐵 ) × V ) ) | |
| 9 | dmres | ⊢ dom ( 𝐴 ↾ 𝐵 ) = ( 𝐵 ∩ dom 𝐴 ) | |
| 10 | 9 | xpeq1i | ⊢ ( dom ( 𝐴 ↾ 𝐵 ) × V ) = ( ( 𝐵 ∩ dom 𝐴 ) × V ) |
| 11 | xpindir | ⊢ ( ( 𝐵 ∩ dom 𝐴 ) × V ) = ( ( 𝐵 × V ) ∩ ( dom 𝐴 × V ) ) | |
| 12 | 10 11 | eqtri | ⊢ ( dom ( 𝐴 ↾ 𝐵 ) × V ) = ( ( 𝐵 × V ) ∩ ( dom 𝐴 × V ) ) |
| 13 | 12 | ineq2i | ⊢ ( 𝐴 ∩ ( dom ( 𝐴 ↾ 𝐵 ) × V ) ) = ( 𝐴 ∩ ( ( 𝐵 × V ) ∩ ( dom 𝐴 × V ) ) ) |
| 14 | 8 13 | eqtri | ⊢ ( 𝐴 ↾ dom ( 𝐴 ↾ 𝐵 ) ) = ( 𝐴 ∩ ( ( 𝐵 × V ) ∩ ( dom 𝐴 × V ) ) ) |
| 15 | df-res | ⊢ ( ◡ ◡ 𝐴 ↾ 𝐵 ) = ( ◡ ◡ 𝐴 ∩ ( 𝐵 × V ) ) | |
| 16 | 7 14 15 | 3eqtr4i | ⊢ ( 𝐴 ↾ dom ( 𝐴 ↾ 𝐵 ) ) = ( ◡ ◡ 𝐴 ↾ 𝐵 ) |
| 17 | rescnvcnv | ⊢ ( ◡ ◡ 𝐴 ↾ 𝐵 ) = ( 𝐴 ↾ 𝐵 ) | |
| 18 | 16 17 | eqtri | ⊢ ( 𝐴 ↾ dom ( 𝐴 ↾ 𝐵 ) ) = ( 𝐴 ↾ 𝐵 ) |