This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of a hypergraph to be a subgraph. (Contributed by AV, 19-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uhgrissubgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝑆 ) | |
| uhgrissubgr.a | ⊢ 𝐴 = ( Vtx ‘ 𝐺 ) | ||
| uhgrissubgr.i | ⊢ 𝐼 = ( iEdg ‘ 𝑆 ) | ||
| uhgrissubgr.b | ⊢ 𝐵 = ( iEdg ‘ 𝐺 ) | ||
| Assertion | uhgrissubgr | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ UHGraph ) → ( 𝑆 SubGraph 𝐺 ↔ ( 𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrissubgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝑆 ) | |
| 2 | uhgrissubgr.a | ⊢ 𝐴 = ( Vtx ‘ 𝐺 ) | |
| 3 | uhgrissubgr.i | ⊢ 𝐼 = ( iEdg ‘ 𝑆 ) | |
| 4 | uhgrissubgr.b | ⊢ 𝐵 = ( iEdg ‘ 𝐺 ) | |
| 5 | eqid | ⊢ ( Edg ‘ 𝑆 ) = ( Edg ‘ 𝑆 ) | |
| 6 | 1 2 3 4 5 | subgrprop2 | ⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) ) |
| 7 | 3simpa | ⊢ ( ( 𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) → ( 𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ) ) | |
| 8 | 6 7 | syl | ⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ) ) |
| 9 | simprl | ⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ UHGraph ) ∧ ( 𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ) ) → 𝑉 ⊆ 𝐴 ) | |
| 10 | simp2 | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ UHGraph ) → Fun 𝐵 ) | |
| 11 | simpr | ⊢ ( ( 𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ) → 𝐼 ⊆ 𝐵 ) | |
| 12 | funssres | ⊢ ( ( Fun 𝐵 ∧ 𝐼 ⊆ 𝐵 ) → ( 𝐵 ↾ dom 𝐼 ) = 𝐼 ) | |
| 13 | 10 11 12 | syl2an | ⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ UHGraph ) ∧ ( 𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ) ) → ( 𝐵 ↾ dom 𝐼 ) = 𝐼 ) |
| 14 | 13 | eqcomd | ⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ UHGraph ) ∧ ( 𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ) ) → 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ) |
| 15 | edguhgr | ⊢ ( ( 𝑆 ∈ UHGraph ∧ 𝑒 ∈ ( Edg ‘ 𝑆 ) ) → 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ) | |
| 16 | 15 | ex | ⊢ ( 𝑆 ∈ UHGraph → ( 𝑒 ∈ ( Edg ‘ 𝑆 ) → 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ) ) |
| 17 | 1 | pweqi | ⊢ 𝒫 𝑉 = 𝒫 ( Vtx ‘ 𝑆 ) |
| 18 | 17 | eleq2i | ⊢ ( 𝑒 ∈ 𝒫 𝑉 ↔ 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ) |
| 19 | 16 18 | imbitrrdi | ⊢ ( 𝑆 ∈ UHGraph → ( 𝑒 ∈ ( Edg ‘ 𝑆 ) → 𝑒 ∈ 𝒫 𝑉 ) ) |
| 20 | 19 | ssrdv | ⊢ ( 𝑆 ∈ UHGraph → ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) |
| 21 | 20 | 3ad2ant3 | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ UHGraph ) → ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) |
| 22 | 21 | adantr | ⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ UHGraph ) ∧ ( 𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ) ) → ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) |
| 23 | 1 2 3 4 5 | issubgr | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ UHGraph ) → ( 𝑆 SubGraph 𝐺 ↔ ( 𝑉 ⊆ 𝐴 ∧ 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) ) ) |
| 24 | 23 | 3adant2 | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ UHGraph ) → ( 𝑆 SubGraph 𝐺 ↔ ( 𝑉 ⊆ 𝐴 ∧ 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) ) ) |
| 25 | 24 | adantr | ⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ UHGraph ) ∧ ( 𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ) ) → ( 𝑆 SubGraph 𝐺 ↔ ( 𝑉 ⊆ 𝐴 ∧ 𝐼 = ( 𝐵 ↾ dom 𝐼 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) ) ) |
| 26 | 9 14 22 25 | mpbir3and | ⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ UHGraph ) ∧ ( 𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ) ) → 𝑆 SubGraph 𝐺 ) |
| 27 | 26 | ex | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ UHGraph ) → ( ( 𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ) → 𝑆 SubGraph 𝐺 ) ) |
| 28 | 8 27 | impbid2 | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ Fun 𝐵 ∧ 𝑆 ∈ UHGraph ) → ( 𝑆 SubGraph 𝐺 ↔ ( 𝑉 ⊆ 𝐴 ∧ 𝐼 ⊆ 𝐵 ) ) ) |