This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An induced subgraph of a hypergraph is a subgraph of the hypergraph. (Contributed by AV, 14-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isubgrvtx.v | |- V = ( Vtx ` G ) |
|
| Assertion | isubgrsubgr | |- ( ( G e. UHGraph /\ S C_ V ) -> ( G ISubGr S ) SubGraph G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isubgrvtx.v | |- V = ( Vtx ` G ) |
|
| 2 | 1 | isubgrvtx | |- ( ( G e. UHGraph /\ S C_ V ) -> ( Vtx ` ( G ISubGr S ) ) = S ) |
| 3 | simpr | |- ( ( G e. UHGraph /\ S C_ V ) -> S C_ V ) |
|
| 4 | 2 3 | eqsstrd | |- ( ( G e. UHGraph /\ S C_ V ) -> ( Vtx ` ( G ISubGr S ) ) C_ V ) |
| 5 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 6 | 1 5 | isubgriedg | |- ( ( G e. UHGraph /\ S C_ V ) -> ( iEdg ` ( G ISubGr S ) ) = ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) ) |
| 7 | resss | |- ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) C_ ( iEdg ` G ) |
|
| 8 | 6 7 | eqsstrdi | |- ( ( G e. UHGraph /\ S C_ V ) -> ( iEdg ` ( G ISubGr S ) ) C_ ( iEdg ` G ) ) |
| 9 | simpl | |- ( ( G e. UHGraph /\ S C_ V ) -> G e. UHGraph ) |
|
| 10 | 5 | uhgrfun | |- ( G e. UHGraph -> Fun ( iEdg ` G ) ) |
| 11 | 10 | adantr | |- ( ( G e. UHGraph /\ S C_ V ) -> Fun ( iEdg ` G ) ) |
| 12 | 1 | isubgruhgr | |- ( ( G e. UHGraph /\ S C_ V ) -> ( G ISubGr S ) e. UHGraph ) |
| 13 | eqid | |- ( Vtx ` ( G ISubGr S ) ) = ( Vtx ` ( G ISubGr S ) ) |
|
| 14 | eqid | |- ( iEdg ` ( G ISubGr S ) ) = ( iEdg ` ( G ISubGr S ) ) |
|
| 15 | 13 1 14 5 | uhgrissubgr | |- ( ( G e. UHGraph /\ Fun ( iEdg ` G ) /\ ( G ISubGr S ) e. UHGraph ) -> ( ( G ISubGr S ) SubGraph G <-> ( ( Vtx ` ( G ISubGr S ) ) C_ V /\ ( iEdg ` ( G ISubGr S ) ) C_ ( iEdg ` G ) ) ) ) |
| 16 | 9 11 12 15 | syl3anc | |- ( ( G e. UHGraph /\ S C_ V ) -> ( ( G ISubGr S ) SubGraph G <-> ( ( Vtx ` ( G ISubGr S ) ) C_ V /\ ( iEdg ` ( G ISubGr S ) ) C_ ( iEdg ` G ) ) ) ) |
| 17 | 4 8 16 | mpbir2and | |- ( ( G e. UHGraph /\ S C_ V ) -> ( G ISubGr S ) SubGraph G ) |