This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expand definition of a submagma. (Contributed by AV, 25-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubmgm.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| issubmgm.p | ⊢ + = ( +g ‘ 𝑀 ) | ||
| Assertion | issubmgm | ⊢ ( 𝑀 ∈ Mgm → ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubmgm.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | issubmgm.p | ⊢ + = ( +g ‘ 𝑀 ) | |
| 3 | fveq2 | ⊢ ( 𝑚 = 𝑀 → ( Base ‘ 𝑚 ) = ( Base ‘ 𝑀 ) ) | |
| 4 | 3 | pweqd | ⊢ ( 𝑚 = 𝑀 → 𝒫 ( Base ‘ 𝑚 ) = 𝒫 ( Base ‘ 𝑀 ) ) |
| 5 | fveq2 | ⊢ ( 𝑚 = 𝑀 → ( +g ‘ 𝑚 ) = ( +g ‘ 𝑀 ) ) | |
| 6 | 5 | oveqd | ⊢ ( 𝑚 = 𝑀 → ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) |
| 7 | 6 | eleq1d | ⊢ ( 𝑚 = 𝑀 → ( ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) ∈ 𝑡 ↔ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 ) ) |
| 8 | 7 | 2ralbidv | ⊢ ( 𝑚 = 𝑀 → ( ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) ∈ 𝑡 ↔ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 ) ) |
| 9 | 4 8 | rabeqbidv | ⊢ ( 𝑚 = 𝑀 → { 𝑡 ∈ 𝒫 ( Base ‘ 𝑚 ) ∣ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) ∈ 𝑡 } = { 𝑡 ∈ 𝒫 ( Base ‘ 𝑀 ) ∣ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 } ) |
| 10 | df-submgm | ⊢ SubMgm = ( 𝑚 ∈ Mgm ↦ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑚 ) ∣ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑚 ) 𝑦 ) ∈ 𝑡 } ) | |
| 11 | fvex | ⊢ ( Base ‘ 𝑀 ) ∈ V | |
| 12 | 11 | pwex | ⊢ 𝒫 ( Base ‘ 𝑀 ) ∈ V |
| 13 | 12 | rabex | ⊢ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑀 ) ∣ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 } ∈ V |
| 14 | 9 10 13 | fvmpt | ⊢ ( 𝑀 ∈ Mgm → ( SubMgm ‘ 𝑀 ) = { 𝑡 ∈ 𝒫 ( Base ‘ 𝑀 ) ∣ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 } ) |
| 15 | 14 | eleq2d | ⊢ ( 𝑀 ∈ Mgm → ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) ↔ 𝑆 ∈ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑀 ) ∣ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 } ) ) |
| 16 | 11 | elpw2 | ⊢ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ↔ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) |
| 17 | 16 | anbi1i | ⊢ ( ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) |
| 18 | eleq2 | ⊢ ( 𝑡 = 𝑆 → ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 ↔ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) | |
| 19 | 18 | raleqbi1dv | ⊢ ( 𝑡 = 𝑆 → ( ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 ↔ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) |
| 20 | 19 | raleqbi1dv | ⊢ ( 𝑡 = 𝑆 → ( ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) |
| 21 | 20 | elrab | ⊢ ( 𝑆 ∈ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑀 ) ∣ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 } ↔ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) |
| 22 | 1 | sseq2i | ⊢ ( 𝑆 ⊆ 𝐵 ↔ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) |
| 23 | 2 | oveqi | ⊢ ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) |
| 24 | 23 | eleq1i | ⊢ ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) |
| 25 | 24 | 2ralbii | ⊢ ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) |
| 26 | 22 25 | anbi12i | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) |
| 27 | 17 21 26 | 3bitr4i | ⊢ ( 𝑆 ∈ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑀 ) ∣ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑡 } ↔ ( 𝑆 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ) |
| 28 | 15 27 | bitrdi | ⊢ ( 𝑀 ∈ Mgm → ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ) ) |