This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Submagmas are subsets that are also magmas. (Contributed by AV, 25-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubmgm2.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| issubmgm2.h | ⊢ 𝐻 = ( 𝑀 ↾s 𝑆 ) | ||
| Assertion | issubmgm2 | ⊢ ( 𝑀 ∈ Mgm → ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ 𝐻 ∈ Mgm ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubmgm2.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | issubmgm2.h | ⊢ 𝐻 = ( 𝑀 ↾s 𝑆 ) | |
| 3 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 4 | 1 3 | issubmgm | ⊢ ( 𝑀 ∈ Mgm → ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) ) |
| 5 | 2 1 | ressbas2 | ⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 6 | 5 | ad2antlr | ⊢ ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 7 | ovex | ⊢ ( 𝑀 ↾s 𝑆 ) ∈ V | |
| 8 | 2 7 | eqeltri | ⊢ 𝐻 ∈ V |
| 9 | 8 | a1i | ⊢ ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) → 𝐻 ∈ V ) |
| 10 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 11 | 10 | ssex | ⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 ∈ V ) |
| 12 | 11 | ad2antlr | ⊢ ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) → 𝑆 ∈ V ) |
| 13 | 2 3 | ressplusg | ⊢ ( 𝑆 ∈ V → ( +g ‘ 𝑀 ) = ( +g ‘ 𝐻 ) ) |
| 14 | 12 13 | syl | ⊢ ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) → ( +g ‘ 𝑀 ) = ( +g ‘ 𝐻 ) ) |
| 15 | oveq1 | ⊢ ( 𝑥 = 𝑎 → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑎 ( +g ‘ 𝑀 ) 𝑦 ) ) | |
| 16 | 15 | eleq1d | ⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ↔ ( 𝑎 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) |
| 17 | oveq2 | ⊢ ( 𝑦 = 𝑏 → ( 𝑎 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) | |
| 18 | 17 | eleq1d | ⊢ ( 𝑦 = 𝑏 → ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ↔ ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝑆 ) ) |
| 19 | 16 18 | rspc2v | ⊢ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 → ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝑆 ) ) |
| 20 | 19 | com12 | ⊢ ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 → ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝑆 ) ) |
| 21 | 20 | adantl | ⊢ ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) → ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝑆 ) ) |
| 22 | 21 | 3impib | ⊢ ( ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝑆 ) |
| 23 | 6 9 14 22 | ismgmd | ⊢ ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) → 𝐻 ∈ Mgm ) |
| 24 | simplr | ⊢ ( ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝐻 ∈ Mgm ) | |
| 25 | simprl | ⊢ ( ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑥 ∈ 𝑆 ) | |
| 26 | 5 | ad3antlr | ⊢ ( ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 27 | 25 26 | eleqtrd | ⊢ ( ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ 𝐻 ) ) |
| 28 | simpr | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝑆 ) | |
| 29 | 28 | adantl | ⊢ ( ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ∈ 𝑆 ) |
| 30 | 29 26 | eleqtrd | ⊢ ( ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ∈ ( Base ‘ 𝐻 ) ) |
| 31 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 32 | eqid | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) | |
| 33 | 31 32 | mgmcl | ⊢ ( ( 𝐻 ∈ Mgm ∧ 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) → ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) ) |
| 34 | 24 27 30 33 | syl3anc | ⊢ ( ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) ) |
| 35 | 11 | ad2antlr | ⊢ ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) → 𝑆 ∈ V ) |
| 36 | 35 13 | syl | ⊢ ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) → ( +g ‘ 𝑀 ) = ( +g ‘ 𝐻 ) ) |
| 37 | 36 | oveqdr | ⊢ ( ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) |
| 38 | 34 37 26 | 3eltr4d | ⊢ ( ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) |
| 39 | 38 | ralrimivva | ⊢ ( ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝐻 ∈ Mgm ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) |
| 40 | 23 39 | impbida | ⊢ ( ( 𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ↔ 𝐻 ∈ Mgm ) ) |
| 41 | 40 | pm5.32da | ⊢ ( 𝑀 ∈ Mgm → ( ( 𝑆 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ 𝐻 ∈ Mgm ) ) ) |
| 42 | 4 41 | bitrd | ⊢ ( 𝑀 ∈ Mgm → ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ 𝐻 ∈ Mgm ) ) ) |