This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A submagma is a subset of a magma which is closed under the operation. Such subsets are themselves magmas. (Contributed by AV, 24-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-submgm | ⊢ SubMgm = ( 𝑠 ∈ Mgm ↦ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑠 ) ∣ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ∈ 𝑡 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | csubmgm | ⊢ SubMgm | |
| 1 | vs | ⊢ 𝑠 | |
| 2 | cmgm | ⊢ Mgm | |
| 3 | vt | ⊢ 𝑡 | |
| 4 | cbs | ⊢ Base | |
| 5 | 1 | cv | ⊢ 𝑠 |
| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑠 ) |
| 7 | 6 | cpw | ⊢ 𝒫 ( Base ‘ 𝑠 ) |
| 8 | vx | ⊢ 𝑥 | |
| 9 | 3 | cv | ⊢ 𝑡 |
| 10 | vy | ⊢ 𝑦 | |
| 11 | 8 | cv | ⊢ 𝑥 |
| 12 | cplusg | ⊢ +g | |
| 13 | 5 12 | cfv | ⊢ ( +g ‘ 𝑠 ) |
| 14 | 10 | cv | ⊢ 𝑦 |
| 15 | 11 14 13 | co | ⊢ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) |
| 16 | 15 9 | wcel | ⊢ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ∈ 𝑡 |
| 17 | 16 10 9 | wral | ⊢ ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ∈ 𝑡 |
| 18 | 17 8 9 | wral | ⊢ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ∈ 𝑡 |
| 19 | 18 3 7 | crab | ⊢ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑠 ) ∣ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ∈ 𝑡 } |
| 20 | 1 2 19 | cmpt | ⊢ ( 𝑠 ∈ Mgm ↦ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑠 ) ∣ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ∈ 𝑡 } ) |
| 21 | 0 20 | wceq | ⊢ SubMgm = ( 𝑠 ∈ Mgm ↦ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑠 ) ∣ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ∈ 𝑡 } ) |