This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being a Sylow subgroup. A Sylow P -subgroup is a P -group which has no proper supersets that are also P -groups. (Contributed by Mario Carneiro, 16-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isslw | ⊢ ( 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) ↔ ( 𝑃 ∈ ℙ ∧ 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ↔ 𝐻 = 𝑘 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-slw | ⊢ pSyl = ( 𝑝 ∈ ℙ , 𝑔 ∈ Grp ↦ { ℎ ∈ ( SubGrp ‘ 𝑔 ) ∣ ∀ 𝑘 ∈ ( SubGrp ‘ 𝑔 ) ( ( ℎ ⊆ 𝑘 ∧ 𝑝 pGrp ( 𝑔 ↾s 𝑘 ) ) ↔ ℎ = 𝑘 ) } ) | |
| 2 | 1 | elmpocl | ⊢ ( 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) → ( 𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ) ) |
| 3 | simp1 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ↔ 𝐻 = 𝑘 ) ) → 𝑃 ∈ ℙ ) | |
| 4 | subgrcl | ⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 5 | 4 | 3ad2ant2 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ↔ 𝐻 = 𝑘 ) ) → 𝐺 ∈ Grp ) |
| 6 | 3 5 | jca | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ↔ 𝐻 = 𝑘 ) ) → ( 𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ) ) |
| 7 | simpr | ⊢ ( ( 𝑝 = 𝑃 ∧ 𝑔 = 𝐺 ) → 𝑔 = 𝐺 ) | |
| 8 | 7 | fveq2d | ⊢ ( ( 𝑝 = 𝑃 ∧ 𝑔 = 𝐺 ) → ( SubGrp ‘ 𝑔 ) = ( SubGrp ‘ 𝐺 ) ) |
| 9 | simpl | ⊢ ( ( 𝑝 = 𝑃 ∧ 𝑔 = 𝐺 ) → 𝑝 = 𝑃 ) | |
| 10 | 7 | oveq1d | ⊢ ( ( 𝑝 = 𝑃 ∧ 𝑔 = 𝐺 ) → ( 𝑔 ↾s 𝑘 ) = ( 𝐺 ↾s 𝑘 ) ) |
| 11 | 9 10 | breq12d | ⊢ ( ( 𝑝 = 𝑃 ∧ 𝑔 = 𝐺 ) → ( 𝑝 pGrp ( 𝑔 ↾s 𝑘 ) ↔ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) |
| 12 | 11 | anbi2d | ⊢ ( ( 𝑝 = 𝑃 ∧ 𝑔 = 𝐺 ) → ( ( ℎ ⊆ 𝑘 ∧ 𝑝 pGrp ( 𝑔 ↾s 𝑘 ) ) ↔ ( ℎ ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) |
| 13 | 12 | bibi1d | ⊢ ( ( 𝑝 = 𝑃 ∧ 𝑔 = 𝐺 ) → ( ( ( ℎ ⊆ 𝑘 ∧ 𝑝 pGrp ( 𝑔 ↾s 𝑘 ) ) ↔ ℎ = 𝑘 ) ↔ ( ( ℎ ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ↔ ℎ = 𝑘 ) ) ) |
| 14 | 8 13 | raleqbidv | ⊢ ( ( 𝑝 = 𝑃 ∧ 𝑔 = 𝐺 ) → ( ∀ 𝑘 ∈ ( SubGrp ‘ 𝑔 ) ( ( ℎ ⊆ 𝑘 ∧ 𝑝 pGrp ( 𝑔 ↾s 𝑘 ) ) ↔ ℎ = 𝑘 ) ↔ ∀ 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ( ( ℎ ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ↔ ℎ = 𝑘 ) ) ) |
| 15 | 8 14 | rabeqbidv | ⊢ ( ( 𝑝 = 𝑃 ∧ 𝑔 = 𝐺 ) → { ℎ ∈ ( SubGrp ‘ 𝑔 ) ∣ ∀ 𝑘 ∈ ( SubGrp ‘ 𝑔 ) ( ( ℎ ⊆ 𝑘 ∧ 𝑝 pGrp ( 𝑔 ↾s 𝑘 ) ) ↔ ℎ = 𝑘 ) } = { ℎ ∈ ( SubGrp ‘ 𝐺 ) ∣ ∀ 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ( ( ℎ ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ↔ ℎ = 𝑘 ) } ) |
| 16 | fvex | ⊢ ( SubGrp ‘ 𝐺 ) ∈ V | |
| 17 | 16 | rabex | ⊢ { ℎ ∈ ( SubGrp ‘ 𝐺 ) ∣ ∀ 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ( ( ℎ ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ↔ ℎ = 𝑘 ) } ∈ V |
| 18 | 15 1 17 | ovmpoa | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ) → ( 𝑃 pSyl 𝐺 ) = { ℎ ∈ ( SubGrp ‘ 𝐺 ) ∣ ∀ 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ( ( ℎ ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ↔ ℎ = 𝑘 ) } ) |
| 19 | 18 | eleq2d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ) → ( 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) ↔ 𝐻 ∈ { ℎ ∈ ( SubGrp ‘ 𝐺 ) ∣ ∀ 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ( ( ℎ ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ↔ ℎ = 𝑘 ) } ) ) |
| 20 | cleq1lem | ⊢ ( ℎ = 𝐻 → ( ( ℎ ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ↔ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) | |
| 21 | eqeq1 | ⊢ ( ℎ = 𝐻 → ( ℎ = 𝑘 ↔ 𝐻 = 𝑘 ) ) | |
| 22 | 20 21 | bibi12d | ⊢ ( ℎ = 𝐻 → ( ( ( ℎ ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ↔ ℎ = 𝑘 ) ↔ ( ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ↔ 𝐻 = 𝑘 ) ) ) |
| 23 | 22 | ralbidv | ⊢ ( ℎ = 𝐻 → ( ∀ 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ( ( ℎ ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ↔ ℎ = 𝑘 ) ↔ ∀ 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ↔ 𝐻 = 𝑘 ) ) ) |
| 24 | 23 | elrab | ⊢ ( 𝐻 ∈ { ℎ ∈ ( SubGrp ‘ 𝐺 ) ∣ ∀ 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ( ( ℎ ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ↔ ℎ = 𝑘 ) } ↔ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ↔ 𝐻 = 𝑘 ) ) ) |
| 25 | 19 24 | bitrdi | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ) → ( 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) ↔ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ↔ 𝐻 = 𝑘 ) ) ) ) |
| 26 | simpl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ) → 𝑃 ∈ ℙ ) | |
| 27 | 26 | biantrurd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ) → ( ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ↔ 𝐻 = 𝑘 ) ) ↔ ( 𝑃 ∈ ℙ ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ↔ 𝐻 = 𝑘 ) ) ) ) ) |
| 28 | 25 27 | bitrd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ) → ( 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) ↔ ( 𝑃 ∈ ℙ ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ↔ 𝐻 = 𝑘 ) ) ) ) ) |
| 29 | 3anass | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ↔ 𝐻 = 𝑘 ) ) ↔ ( 𝑃 ∈ ℙ ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ↔ 𝐻 = 𝑘 ) ) ) ) | |
| 30 | 28 29 | bitr4di | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ) → ( 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) ↔ ( 𝑃 ∈ ℙ ∧ 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ↔ 𝐻 = 𝑘 ) ) ) ) |
| 31 | 2 6 30 | pm5.21nii | ⊢ ( 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) ↔ ( 𝑃 ∈ ℙ ∧ 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ↔ 𝐻 = 𝑘 ) ) ) |