This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of Sylow p-subgroups of a group g . A Sylow p-subgroup is a p-group that is not a subgroup of any other p-groups in g . (Contributed by Mario Carneiro, 16-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-slw | ⊢ pSyl = ( 𝑝 ∈ ℙ , 𝑔 ∈ Grp ↦ { ℎ ∈ ( SubGrp ‘ 𝑔 ) ∣ ∀ 𝑘 ∈ ( SubGrp ‘ 𝑔 ) ( ( ℎ ⊆ 𝑘 ∧ 𝑝 pGrp ( 𝑔 ↾s 𝑘 ) ) ↔ ℎ = 𝑘 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cslw | ⊢ pSyl | |
| 1 | vp | ⊢ 𝑝 | |
| 2 | cprime | ⊢ ℙ | |
| 3 | vg | ⊢ 𝑔 | |
| 4 | cgrp | ⊢ Grp | |
| 5 | vh | ⊢ ℎ | |
| 6 | csubg | ⊢ SubGrp | |
| 7 | 3 | cv | ⊢ 𝑔 |
| 8 | 7 6 | cfv | ⊢ ( SubGrp ‘ 𝑔 ) |
| 9 | vk | ⊢ 𝑘 | |
| 10 | 5 | cv | ⊢ ℎ |
| 11 | 9 | cv | ⊢ 𝑘 |
| 12 | 10 11 | wss | ⊢ ℎ ⊆ 𝑘 |
| 13 | 1 | cv | ⊢ 𝑝 |
| 14 | cpgp | ⊢ pGrp | |
| 15 | cress | ⊢ ↾s | |
| 16 | 7 11 15 | co | ⊢ ( 𝑔 ↾s 𝑘 ) |
| 17 | 13 16 14 | wbr | ⊢ 𝑝 pGrp ( 𝑔 ↾s 𝑘 ) |
| 18 | 12 17 | wa | ⊢ ( ℎ ⊆ 𝑘 ∧ 𝑝 pGrp ( 𝑔 ↾s 𝑘 ) ) |
| 19 | 10 11 | wceq | ⊢ ℎ = 𝑘 |
| 20 | 18 19 | wb | ⊢ ( ( ℎ ⊆ 𝑘 ∧ 𝑝 pGrp ( 𝑔 ↾s 𝑘 ) ) ↔ ℎ = 𝑘 ) |
| 21 | 20 9 8 | wral | ⊢ ∀ 𝑘 ∈ ( SubGrp ‘ 𝑔 ) ( ( ℎ ⊆ 𝑘 ∧ 𝑝 pGrp ( 𝑔 ↾s 𝑘 ) ) ↔ ℎ = 𝑘 ) |
| 22 | 21 5 8 | crab | ⊢ { ℎ ∈ ( SubGrp ‘ 𝑔 ) ∣ ∀ 𝑘 ∈ ( SubGrp ‘ 𝑔 ) ( ( ℎ ⊆ 𝑘 ∧ 𝑝 pGrp ( 𝑔 ↾s 𝑘 ) ) ↔ ℎ = 𝑘 ) } |
| 23 | 1 3 2 4 22 | cmpo | ⊢ ( 𝑝 ∈ ℙ , 𝑔 ∈ Grp ↦ { ℎ ∈ ( SubGrp ‘ 𝑔 ) ∣ ∀ 𝑘 ∈ ( SubGrp ‘ 𝑔 ) ( ( ℎ ⊆ 𝑘 ∧ 𝑝 pGrp ( 𝑔 ↾s 𝑘 ) ) ↔ ℎ = 𝑘 ) } ) |
| 24 | 0 23 | wceq | ⊢ pSyl = ( 𝑝 ∈ ℙ , 𝑔 ∈ Grp ↦ { ℎ ∈ ( SubGrp ‘ 𝑔 ) ∣ ∀ 𝑘 ∈ ( SubGrp ‘ 𝑔 ) ( ( ℎ ⊆ 𝑘 ∧ 𝑝 pGrp ( 𝑔 ↾s 𝑘 ) ) ↔ ℎ = 𝑘 ) } ) |