This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a two-parameter class is not empty, constrain the implicit pair. (Contributed by Stefan O'Rear, 7-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elmpocl.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) | |
| Assertion | elmpocl | ⊢ ( 𝑋 ∈ ( 𝑆 𝐹 𝑇 ) → ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmpocl.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) | |
| 2 | df-mpo | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) } | |
| 3 | 1 2 | eqtri | ⊢ 𝐹 = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) } |
| 4 | 3 | dmeqi | ⊢ dom 𝐹 = dom { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) } |
| 5 | dmoprabss | ⊢ dom { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) } ⊆ ( 𝐴 × 𝐵 ) | |
| 6 | 4 5 | eqsstri | ⊢ dom 𝐹 ⊆ ( 𝐴 × 𝐵 ) |
| 7 | elfvdm | ⊢ ( 𝑋 ∈ ( 𝐹 ‘ 〈 𝑆 , 𝑇 〉 ) → 〈 𝑆 , 𝑇 〉 ∈ dom 𝐹 ) | |
| 8 | df-ov | ⊢ ( 𝑆 𝐹 𝑇 ) = ( 𝐹 ‘ 〈 𝑆 , 𝑇 〉 ) | |
| 9 | 7 8 | eleq2s | ⊢ ( 𝑋 ∈ ( 𝑆 𝐹 𝑇 ) → 〈 𝑆 , 𝑇 〉 ∈ dom 𝐹 ) |
| 10 | 6 9 | sselid | ⊢ ( 𝑋 ∈ ( 𝑆 𝐹 𝑇 ) → 〈 𝑆 , 𝑇 〉 ∈ ( 𝐴 × 𝐵 ) ) |
| 11 | opelxp | ⊢ ( 〈 𝑆 , 𝑇 〉 ∈ ( 𝐴 × 𝐵 ) ↔ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐵 ) ) | |
| 12 | 10 11 | sylib | ⊢ ( 𝑋 ∈ ( 𝑆 𝐹 𝑇 ) → ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐵 ) ) |