This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being a Sylow subgroup. A Sylow P -subgroup is a P -group which has no proper supersets that are also P -groups. (Contributed by Mario Carneiro, 16-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isslw | |- ( H e. ( P pSyl G ) <-> ( P e. Prime /\ H e. ( SubGrp ` G ) /\ A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-slw | |- pSyl = ( p e. Prime , g e. Grp |-> { h e. ( SubGrp ` g ) | A. k e. ( SubGrp ` g ) ( ( h C_ k /\ p pGrp ( g |`s k ) ) <-> h = k ) } ) |
|
| 2 | 1 | elmpocl | |- ( H e. ( P pSyl G ) -> ( P e. Prime /\ G e. Grp ) ) |
| 3 | simp1 | |- ( ( P e. Prime /\ H e. ( SubGrp ` G ) /\ A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) -> P e. Prime ) |
|
| 4 | subgrcl | |- ( H e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 5 | 4 | 3ad2ant2 | |- ( ( P e. Prime /\ H e. ( SubGrp ` G ) /\ A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) -> G e. Grp ) |
| 6 | 3 5 | jca | |- ( ( P e. Prime /\ H e. ( SubGrp ` G ) /\ A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) -> ( P e. Prime /\ G e. Grp ) ) |
| 7 | simpr | |- ( ( p = P /\ g = G ) -> g = G ) |
|
| 8 | 7 | fveq2d | |- ( ( p = P /\ g = G ) -> ( SubGrp ` g ) = ( SubGrp ` G ) ) |
| 9 | simpl | |- ( ( p = P /\ g = G ) -> p = P ) |
|
| 10 | 7 | oveq1d | |- ( ( p = P /\ g = G ) -> ( g |`s k ) = ( G |`s k ) ) |
| 11 | 9 10 | breq12d | |- ( ( p = P /\ g = G ) -> ( p pGrp ( g |`s k ) <-> P pGrp ( G |`s k ) ) ) |
| 12 | 11 | anbi2d | |- ( ( p = P /\ g = G ) -> ( ( h C_ k /\ p pGrp ( g |`s k ) ) <-> ( h C_ k /\ P pGrp ( G |`s k ) ) ) ) |
| 13 | 12 | bibi1d | |- ( ( p = P /\ g = G ) -> ( ( ( h C_ k /\ p pGrp ( g |`s k ) ) <-> h = k ) <-> ( ( h C_ k /\ P pGrp ( G |`s k ) ) <-> h = k ) ) ) |
| 14 | 8 13 | raleqbidv | |- ( ( p = P /\ g = G ) -> ( A. k e. ( SubGrp ` g ) ( ( h C_ k /\ p pGrp ( g |`s k ) ) <-> h = k ) <-> A. k e. ( SubGrp ` G ) ( ( h C_ k /\ P pGrp ( G |`s k ) ) <-> h = k ) ) ) |
| 15 | 8 14 | rabeqbidv | |- ( ( p = P /\ g = G ) -> { h e. ( SubGrp ` g ) | A. k e. ( SubGrp ` g ) ( ( h C_ k /\ p pGrp ( g |`s k ) ) <-> h = k ) } = { h e. ( SubGrp ` G ) | A. k e. ( SubGrp ` G ) ( ( h C_ k /\ P pGrp ( G |`s k ) ) <-> h = k ) } ) |
| 16 | fvex | |- ( SubGrp ` G ) e. _V |
|
| 17 | 16 | rabex | |- { h e. ( SubGrp ` G ) | A. k e. ( SubGrp ` G ) ( ( h C_ k /\ P pGrp ( G |`s k ) ) <-> h = k ) } e. _V |
| 18 | 15 1 17 | ovmpoa | |- ( ( P e. Prime /\ G e. Grp ) -> ( P pSyl G ) = { h e. ( SubGrp ` G ) | A. k e. ( SubGrp ` G ) ( ( h C_ k /\ P pGrp ( G |`s k ) ) <-> h = k ) } ) |
| 19 | 18 | eleq2d | |- ( ( P e. Prime /\ G e. Grp ) -> ( H e. ( P pSyl G ) <-> H e. { h e. ( SubGrp ` G ) | A. k e. ( SubGrp ` G ) ( ( h C_ k /\ P pGrp ( G |`s k ) ) <-> h = k ) } ) ) |
| 20 | cleq1lem | |- ( h = H -> ( ( h C_ k /\ P pGrp ( G |`s k ) ) <-> ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) |
|
| 21 | eqeq1 | |- ( h = H -> ( h = k <-> H = k ) ) |
|
| 22 | 20 21 | bibi12d | |- ( h = H -> ( ( ( h C_ k /\ P pGrp ( G |`s k ) ) <-> h = k ) <-> ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) ) |
| 23 | 22 | ralbidv | |- ( h = H -> ( A. k e. ( SubGrp ` G ) ( ( h C_ k /\ P pGrp ( G |`s k ) ) <-> h = k ) <-> A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) ) |
| 24 | 23 | elrab | |- ( H e. { h e. ( SubGrp ` G ) | A. k e. ( SubGrp ` G ) ( ( h C_ k /\ P pGrp ( G |`s k ) ) <-> h = k ) } <-> ( H e. ( SubGrp ` G ) /\ A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) ) |
| 25 | 19 24 | bitrdi | |- ( ( P e. Prime /\ G e. Grp ) -> ( H e. ( P pSyl G ) <-> ( H e. ( SubGrp ` G ) /\ A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) ) ) |
| 26 | simpl | |- ( ( P e. Prime /\ G e. Grp ) -> P e. Prime ) |
|
| 27 | 26 | biantrurd | |- ( ( P e. Prime /\ G e. Grp ) -> ( ( H e. ( SubGrp ` G ) /\ A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) <-> ( P e. Prime /\ ( H e. ( SubGrp ` G ) /\ A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) ) ) ) |
| 28 | 25 27 | bitrd | |- ( ( P e. Prime /\ G e. Grp ) -> ( H e. ( P pSyl G ) <-> ( P e. Prime /\ ( H e. ( SubGrp ` G ) /\ A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) ) ) ) |
| 29 | 3anass | |- ( ( P e. Prime /\ H e. ( SubGrp ` G ) /\ A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) <-> ( P e. Prime /\ ( H e. ( SubGrp ` G ) /\ A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) ) ) |
|
| 30 | 28 29 | bitr4di | |- ( ( P e. Prime /\ G e. Grp ) -> ( H e. ( P pSyl G ) <-> ( P e. Prime /\ H e. ( SubGrp ` G ) /\ A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) ) ) |
| 31 | 2 6 30 | pm5.21nii | |- ( H e. ( P pSyl G ) <-> ( P e. Prime /\ H e. ( SubGrp ` G ) /\ A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) ) |