This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of prime factors of an integer greater than or equal to 2 satisfies the conditions to have a supremum, and that supremum is a member of the set. (Contributed by Paul Chapman, 17-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | maxprmfct.1 | ⊢ 𝑆 = { 𝑧 ∈ ℙ ∣ 𝑧 ∥ 𝑁 } | |
| Assertion | maxprmfct | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) ∧ sup ( 𝑆 , ℝ , < ) ∈ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | maxprmfct.1 | ⊢ 𝑆 = { 𝑧 ∈ ℙ ∣ 𝑧 ∥ 𝑁 } | |
| 2 | 1 | ssrab3 | ⊢ 𝑆 ⊆ ℙ |
| 3 | prmz | ⊢ ( 𝑦 ∈ ℙ → 𝑦 ∈ ℤ ) | |
| 4 | 3 | ssriv | ⊢ ℙ ⊆ ℤ |
| 5 | 2 4 | sstri | ⊢ 𝑆 ⊆ ℤ |
| 6 | 5 | a1i | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑆 ⊆ ℤ ) |
| 7 | exprmfct | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑦 ∈ ℙ 𝑦 ∥ 𝑁 ) | |
| 8 | breq1 | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∥ 𝑁 ↔ 𝑦 ∥ 𝑁 ) ) | |
| 9 | 8 1 | elrab2 | ⊢ ( 𝑦 ∈ 𝑆 ↔ ( 𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑁 ) ) |
| 10 | 9 | exbii | ⊢ ( ∃ 𝑦 𝑦 ∈ 𝑆 ↔ ∃ 𝑦 ( 𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑁 ) ) |
| 11 | n0 | ⊢ ( 𝑆 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝑆 ) | |
| 12 | df-rex | ⊢ ( ∃ 𝑦 ∈ ℙ 𝑦 ∥ 𝑁 ↔ ∃ 𝑦 ( 𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑁 ) ) | |
| 13 | 10 11 12 | 3bitr4ri | ⊢ ( ∃ 𝑦 ∈ ℙ 𝑦 ∥ 𝑁 ↔ 𝑆 ≠ ∅ ) |
| 14 | 7 13 | sylib | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑆 ≠ ∅ ) |
| 15 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℤ ) | |
| 16 | eluz2nn | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℕ ) | |
| 17 | 3 | anim1i | ⊢ ( ( 𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑁 ) → ( 𝑦 ∈ ℤ ∧ 𝑦 ∥ 𝑁 ) ) |
| 18 | 9 17 | sylbi | ⊢ ( 𝑦 ∈ 𝑆 → ( 𝑦 ∈ ℤ ∧ 𝑦 ∥ 𝑁 ) ) |
| 19 | dvdsle | ⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑦 ∥ 𝑁 → 𝑦 ≤ 𝑁 ) ) | |
| 20 | 19 | expcom | ⊢ ( 𝑁 ∈ ℕ → ( 𝑦 ∈ ℤ → ( 𝑦 ∥ 𝑁 → 𝑦 ≤ 𝑁 ) ) ) |
| 21 | 20 | impd | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑦 ∈ ℤ ∧ 𝑦 ∥ 𝑁 ) → 𝑦 ≤ 𝑁 ) ) |
| 22 | 18 21 | syl5 | ⊢ ( 𝑁 ∈ ℕ → ( 𝑦 ∈ 𝑆 → 𝑦 ≤ 𝑁 ) ) |
| 23 | 22 | ralrimiv | ⊢ ( 𝑁 ∈ ℕ → ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑁 ) |
| 24 | 16 23 | syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑁 ) |
| 25 | brralrspcev | ⊢ ( ( 𝑁 ∈ ℤ ∧ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑁 ) → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) | |
| 26 | 15 24 25 | syl2anc | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) |
| 27 | 6 14 26 | 3jca | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) ) |
| 28 | suprzcl2 | ⊢ ( ( 𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) → sup ( 𝑆 , ℝ , < ) ∈ 𝑆 ) | |
| 29 | 27 28 | jccir | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑆 ⊆ ℤ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ) ∧ sup ( 𝑆 , ℝ , < ) ∈ 𝑆 ) ) |