This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Square root is monotonic. (Contributed by NM, 17-Mar-2005) (Proof shortened by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqrtle | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 ≤ 𝐵 ↔ ( √ ‘ 𝐴 ) ≤ ( √ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resqrtcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( √ ‘ 𝐴 ) ∈ ℝ ) | |
| 2 | sqrtge0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 0 ≤ ( √ ‘ 𝐴 ) ) | |
| 3 | 1 2 | jca | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( √ ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ 𝐴 ) ) ) |
| 4 | resqrtcl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → ( √ ‘ 𝐵 ) ∈ ℝ ) | |
| 5 | sqrtge0 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → 0 ≤ ( √ ‘ 𝐵 ) ) | |
| 6 | 4 5 | jca | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → ( ( √ ‘ 𝐵 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ 𝐵 ) ) ) |
| 7 | le2sq | ⊢ ( ( ( ( √ ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ 𝐴 ) ) ∧ ( ( √ ‘ 𝐵 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ 𝐵 ) ) ) → ( ( √ ‘ 𝐴 ) ≤ ( √ ‘ 𝐵 ) ↔ ( ( √ ‘ 𝐴 ) ↑ 2 ) ≤ ( ( √ ‘ 𝐵 ) ↑ 2 ) ) ) | |
| 8 | 3 6 7 | syl2an | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( √ ‘ 𝐴 ) ≤ ( √ ‘ 𝐵 ) ↔ ( ( √ ‘ 𝐴 ) ↑ 2 ) ≤ ( ( √ ‘ 𝐵 ) ↑ 2 ) ) ) |
| 9 | resqrtth | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) | |
| 10 | resqrtth | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → ( ( √ ‘ 𝐵 ) ↑ 2 ) = 𝐵 ) | |
| 11 | 9 10 | breqan12d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( ( √ ‘ 𝐴 ) ↑ 2 ) ≤ ( ( √ ‘ 𝐵 ) ↑ 2 ) ↔ 𝐴 ≤ 𝐵 ) ) |
| 12 | 8 11 | bitr2d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 ≤ 𝐵 ↔ ( √ ‘ 𝐴 ) ≤ ( √ ‘ 𝐵 ) ) ) |