This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isprm2 . (Contributed by Paul Chapman, 22-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isprm2lem | ⊢ ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) → ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ↔ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } = { 1 , 𝑃 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr | ⊢ ( ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ) → 𝑃 ≠ 1 ) | |
| 2 | 1 | necomd | ⊢ ( ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ) → 1 ≠ 𝑃 ) |
| 3 | simpr | ⊢ ( ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ) → { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ) | |
| 4 | nnz | ⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℤ ) | |
| 5 | 1dvds | ⊢ ( 𝑃 ∈ ℤ → 1 ∥ 𝑃 ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑃 ∈ ℕ → 1 ∥ 𝑃 ) |
| 7 | 6 | ad2antrr | ⊢ ( ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ) → 1 ∥ 𝑃 ) |
| 8 | 1nn | ⊢ 1 ∈ ℕ | |
| 9 | breq1 | ⊢ ( 𝑛 = 1 → ( 𝑛 ∥ 𝑃 ↔ 1 ∥ 𝑃 ) ) | |
| 10 | 9 | elrab3 | ⊢ ( 1 ∈ ℕ → ( 1 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ↔ 1 ∥ 𝑃 ) ) |
| 11 | 8 10 | ax-mp | ⊢ ( 1 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ↔ 1 ∥ 𝑃 ) |
| 12 | 7 11 | sylibr | ⊢ ( ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ) → 1 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ) |
| 13 | iddvds | ⊢ ( 𝑃 ∈ ℤ → 𝑃 ∥ 𝑃 ) | |
| 14 | 4 13 | syl | ⊢ ( 𝑃 ∈ ℕ → 𝑃 ∥ 𝑃 ) |
| 15 | 14 | ad2antrr | ⊢ ( ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ) → 𝑃 ∥ 𝑃 ) |
| 16 | breq1 | ⊢ ( 𝑛 = 𝑃 → ( 𝑛 ∥ 𝑃 ↔ 𝑃 ∥ 𝑃 ) ) | |
| 17 | 16 | elrab3 | ⊢ ( 𝑃 ∈ ℕ → ( 𝑃 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ↔ 𝑃 ∥ 𝑃 ) ) |
| 18 | 17 | ad2antrr | ⊢ ( ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ) → ( 𝑃 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ↔ 𝑃 ∥ 𝑃 ) ) |
| 19 | 15 18 | mpbird | ⊢ ( ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ) → 𝑃 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ) |
| 20 | en2eqpr | ⊢ ( ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ∧ 1 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ∧ 𝑃 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ) → ( 1 ≠ 𝑃 → { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } = { 1 , 𝑃 } ) ) | |
| 21 | 3 12 19 20 | syl3anc | ⊢ ( ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ) → ( 1 ≠ 𝑃 → { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } = { 1 , 𝑃 } ) ) |
| 22 | 2 21 | mpd | ⊢ ( ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ) → { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } = { 1 , 𝑃 } ) |
| 23 | 22 | ex | ⊢ ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) → ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o → { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } = { 1 , 𝑃 } ) ) |
| 24 | necom | ⊢ ( 1 ≠ 𝑃 ↔ 𝑃 ≠ 1 ) | |
| 25 | pr2ne | ⊢ ( ( 1 ∈ ℕ ∧ 𝑃 ∈ ℕ ) → ( { 1 , 𝑃 } ≈ 2o ↔ 1 ≠ 𝑃 ) ) | |
| 26 | 8 25 | mpan | ⊢ ( 𝑃 ∈ ℕ → ( { 1 , 𝑃 } ≈ 2o ↔ 1 ≠ 𝑃 ) ) |
| 27 | 26 | biimpar | ⊢ ( ( 𝑃 ∈ ℕ ∧ 1 ≠ 𝑃 ) → { 1 , 𝑃 } ≈ 2o ) |
| 28 | 24 27 | sylan2br | ⊢ ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) → { 1 , 𝑃 } ≈ 2o ) |
| 29 | breq1 | ⊢ ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } = { 1 , 𝑃 } → ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ↔ { 1 , 𝑃 } ≈ 2o ) ) | |
| 30 | 28 29 | syl5ibrcom | ⊢ ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) → ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } = { 1 , 𝑃 } → { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ) ) |
| 31 | 23 30 | impbid | ⊢ ( ( 𝑃 ∈ ℕ ∧ 𝑃 ≠ 1 ) → ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } ≈ 2o ↔ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃 } = { 1 , 𝑃 } ) ) |