This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The positive divisors of a positive integer include 1 and itself. (Contributed by Paul Chapman, 22-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1idssfct | ⊢ ( 𝑁 ∈ ℕ → { 1 , 𝑁 } ⊆ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn | ⊢ 1 ∈ ℕ | |
| 2 | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) | |
| 3 | 1dvds | ⊢ ( 𝑁 ∈ ℤ → 1 ∥ 𝑁 ) | |
| 4 | 2 3 | syl | ⊢ ( 𝑁 ∈ ℕ → 1 ∥ 𝑁 ) |
| 5 | breq1 | ⊢ ( 𝑛 = 1 → ( 𝑛 ∥ 𝑁 ↔ 1 ∥ 𝑁 ) ) | |
| 6 | 5 | elrab | ⊢ ( 1 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁 } ↔ ( 1 ∈ ℕ ∧ 1 ∥ 𝑁 ) ) |
| 7 | 6 | biimpri | ⊢ ( ( 1 ∈ ℕ ∧ 1 ∥ 𝑁 ) → 1 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁 } ) |
| 8 | 1 4 7 | sylancr | ⊢ ( 𝑁 ∈ ℕ → 1 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁 } ) |
| 9 | iddvds | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∥ 𝑁 ) | |
| 10 | 2 9 | syl | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∥ 𝑁 ) |
| 11 | breq1 | ⊢ ( 𝑛 = 𝑁 → ( 𝑛 ∥ 𝑁 ↔ 𝑁 ∥ 𝑁 ) ) | |
| 12 | 11 | elrab | ⊢ ( 𝑁 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁 } ↔ ( 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑁 ) ) |
| 13 | 12 | biimpri | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑁 ) → 𝑁 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁 } ) |
| 14 | 10 13 | mpdan | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁 } ) |
| 15 | 8 14 | prssd | ⊢ ( 𝑁 ∈ ℕ → { 1 , 𝑁 } ⊆ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁 } ) |