This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordered ring is a ring with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 18-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isorng.0 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| isorng.1 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| isorng.2 | ⊢ · = ( .r ‘ 𝑅 ) | ||
| isorng.3 | ⊢ ≤ = ( le ‘ 𝑅 ) | ||
| Assertion | isorng | ⊢ ( 𝑅 ∈ oRing ↔ ( 𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏 ) → 0 ≤ ( 𝑎 · 𝑏 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isorng.0 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | isorng.1 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | isorng.2 | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | isorng.3 | ⊢ ≤ = ( le ‘ 𝑅 ) | |
| 5 | elin | ⊢ ( 𝑅 ∈ ( Ring ∩ oGrp ) ↔ ( 𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ) ) | |
| 6 | 5 | anbi1i | ⊢ ( ( 𝑅 ∈ ( Ring ∩ oGrp ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏 ) → 0 ≤ ( 𝑎 · 𝑏 ) ) ) ↔ ( ( 𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏 ) → 0 ≤ ( 𝑎 · 𝑏 ) ) ) ) |
| 7 | fvexd | ⊢ ( 𝑟 = 𝑅 → ( .r ‘ 𝑟 ) ∈ V ) | |
| 8 | simpr | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑡 = ( .r ‘ 𝑟 ) ) → 𝑡 = ( .r ‘ 𝑟 ) ) | |
| 9 | simpl | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑡 = ( .r ‘ 𝑟 ) ) → 𝑟 = 𝑅 ) | |
| 10 | 9 | fveq2d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑡 = ( .r ‘ 𝑟 ) ) → ( .r ‘ 𝑟 ) = ( .r ‘ 𝑅 ) ) |
| 11 | 10 3 | eqtr4di | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑡 = ( .r ‘ 𝑟 ) ) → ( .r ‘ 𝑟 ) = · ) |
| 12 | 8 11 | eqtrd | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑡 = ( .r ‘ 𝑟 ) ) → 𝑡 = · ) |
| 13 | 12 | oveqd | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑡 = ( .r ‘ 𝑟 ) ) → ( 𝑎 𝑡 𝑏 ) = ( 𝑎 · 𝑏 ) ) |
| 14 | 13 | breq2d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑡 = ( .r ‘ 𝑟 ) ) → ( 0 𝑙 ( 𝑎 𝑡 𝑏 ) ↔ 0 𝑙 ( 𝑎 · 𝑏 ) ) ) |
| 15 | 14 | imbi2d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑡 = ( .r ‘ 𝑟 ) ) → ( ( ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) → 0 𝑙 ( 𝑎 𝑡 𝑏 ) ) ↔ ( ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) → 0 𝑙 ( 𝑎 · 𝑏 ) ) ) ) |
| 16 | 15 | 2ralbidv | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑡 = ( .r ‘ 𝑟 ) ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) → 0 𝑙 ( 𝑎 𝑡 𝑏 ) ) ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) → 0 𝑙 ( 𝑎 · 𝑏 ) ) ) ) |
| 17 | 16 | sbcbidv | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑡 = ( .r ‘ 𝑟 ) ) → ( [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) → 0 𝑙 ( 𝑎 𝑡 𝑏 ) ) ↔ [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) → 0 𝑙 ( 𝑎 · 𝑏 ) ) ) ) |
| 18 | 7 17 | sbcied | ⊢ ( 𝑟 = 𝑅 → ( [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) → 0 𝑙 ( 𝑎 𝑡 𝑏 ) ) ↔ [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) → 0 𝑙 ( 𝑎 · 𝑏 ) ) ) ) |
| 19 | fvexd | ⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) ∈ V ) | |
| 20 | simpr | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝑣 = ( Base ‘ 𝑟 ) ) | |
| 21 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) | |
| 22 | 21 1 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = 𝐵 ) |
| 23 | 22 | adantr | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( Base ‘ 𝑟 ) = 𝐵 ) |
| 24 | 20 23 | eqtrd | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝑣 = 𝐵 ) |
| 25 | raleq | ⊢ ( 𝑣 = 𝐵 → ( ∀ 𝑏 ∈ 𝑣 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ↔ ∀ 𝑏 ∈ 𝐵 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ) ) | |
| 26 | 25 | raleqbi1dv | ⊢ ( 𝑣 = 𝐵 → ( ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ) ) |
| 27 | 24 26 | syl | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ) ) |
| 28 | 27 | sbcbidv | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ↔ [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ) ) |
| 29 | 28 | sbcbidv | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ↔ [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ) ) |
| 30 | 29 | sbcbidv | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( [ ( 0g ‘ 𝑟 ) / 𝑧 ] [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ↔ [ ( 0g ‘ 𝑟 ) / 𝑧 ] [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ) ) |
| 31 | 19 30 | sbcied | ⊢ ( 𝑟 = 𝑅 → ( [ ( Base ‘ 𝑟 ) / 𝑣 ] [ ( 0g ‘ 𝑟 ) / 𝑧 ] [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ↔ [ ( 0g ‘ 𝑟 ) / 𝑧 ] [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ) ) |
| 32 | fvexd | ⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) ∈ V ) | |
| 33 | simpr | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑧 = ( 0g ‘ 𝑟 ) ) → 𝑧 = ( 0g ‘ 𝑟 ) ) | |
| 34 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = ( 0g ‘ 𝑅 ) ) | |
| 35 | 34 2 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = 0 ) |
| 36 | 35 | adantr | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑧 = ( 0g ‘ 𝑟 ) ) → ( 0g ‘ 𝑟 ) = 0 ) |
| 37 | 33 36 | eqtrd | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑧 = ( 0g ‘ 𝑟 ) ) → 𝑧 = 0 ) |
| 38 | 37 | breq1d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑧 = ( 0g ‘ 𝑟 ) ) → ( 𝑧 𝑙 𝑎 ↔ 0 𝑙 𝑎 ) ) |
| 39 | 37 | breq1d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑧 = ( 0g ‘ 𝑟 ) ) → ( 𝑧 𝑙 𝑏 ↔ 0 𝑙 𝑏 ) ) |
| 40 | 38 39 | anbi12d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑧 = ( 0g ‘ 𝑟 ) ) → ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) ↔ ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) ) ) |
| 41 | 37 | breq1d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑧 = ( 0g ‘ 𝑟 ) ) → ( 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ↔ 0 𝑙 ( 𝑎 𝑡 𝑏 ) ) ) |
| 42 | 40 41 | imbi12d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑧 = ( 0g ‘ 𝑟 ) ) → ( ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ↔ ( ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) → 0 𝑙 ( 𝑎 𝑡 𝑏 ) ) ) ) |
| 43 | 42 | 2ralbidv | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑧 = ( 0g ‘ 𝑟 ) ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) → 0 𝑙 ( 𝑎 𝑡 𝑏 ) ) ) ) |
| 44 | 43 | sbcbidv | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑧 = ( 0g ‘ 𝑟 ) ) → ( [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ↔ [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) → 0 𝑙 ( 𝑎 𝑡 𝑏 ) ) ) ) |
| 45 | 44 | sbcbidv | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑧 = ( 0g ‘ 𝑟 ) ) → ( [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ↔ [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) → 0 𝑙 ( 𝑎 𝑡 𝑏 ) ) ) ) |
| 46 | 32 45 | sbcied | ⊢ ( 𝑟 = 𝑅 → ( [ ( 0g ‘ 𝑟 ) / 𝑧 ] [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ↔ [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) → 0 𝑙 ( 𝑎 𝑡 𝑏 ) ) ) ) |
| 47 | 31 46 | bitr2d | ⊢ ( 𝑟 = 𝑅 → ( [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) → 0 𝑙 ( 𝑎 𝑡 𝑏 ) ) ↔ [ ( Base ‘ 𝑟 ) / 𝑣 ] [ ( 0g ‘ 𝑟 ) / 𝑧 ] [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ) ) |
| 48 | fvexd | ⊢ ( 𝑟 = 𝑅 → ( le ‘ 𝑟 ) ∈ V ) | |
| 49 | simpr | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑙 = ( le ‘ 𝑟 ) ) → 𝑙 = ( le ‘ 𝑟 ) ) | |
| 50 | simpl | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑙 = ( le ‘ 𝑟 ) ) → 𝑟 = 𝑅 ) | |
| 51 | 50 | fveq2d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑙 = ( le ‘ 𝑟 ) ) → ( le ‘ 𝑟 ) = ( le ‘ 𝑅 ) ) |
| 52 | 51 4 | eqtr4di | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑙 = ( le ‘ 𝑟 ) ) → ( le ‘ 𝑟 ) = ≤ ) |
| 53 | 49 52 | eqtrd | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑙 = ( le ‘ 𝑟 ) ) → 𝑙 = ≤ ) |
| 54 | 53 | breqd | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑙 = ( le ‘ 𝑟 ) ) → ( 0 𝑙 𝑎 ↔ 0 ≤ 𝑎 ) ) |
| 55 | 53 | breqd | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑙 = ( le ‘ 𝑟 ) ) → ( 0 𝑙 𝑏 ↔ 0 ≤ 𝑏 ) ) |
| 56 | 54 55 | anbi12d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑙 = ( le ‘ 𝑟 ) ) → ( ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) ↔ ( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏 ) ) ) |
| 57 | 53 | breqd | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑙 = ( le ‘ 𝑟 ) ) → ( 0 𝑙 ( 𝑎 · 𝑏 ) ↔ 0 ≤ ( 𝑎 · 𝑏 ) ) ) |
| 58 | 56 57 | imbi12d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑙 = ( le ‘ 𝑟 ) ) → ( ( ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) → 0 𝑙 ( 𝑎 · 𝑏 ) ) ↔ ( ( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏 ) → 0 ≤ ( 𝑎 · 𝑏 ) ) ) ) |
| 59 | 58 | 2ralbidv | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑙 = ( le ‘ 𝑟 ) ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) → 0 𝑙 ( 𝑎 · 𝑏 ) ) ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏 ) → 0 ≤ ( 𝑎 · 𝑏 ) ) ) ) |
| 60 | 48 59 | sbcied | ⊢ ( 𝑟 = 𝑅 → ( [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) → 0 𝑙 ( 𝑎 · 𝑏 ) ) ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏 ) → 0 ≤ ( 𝑎 · 𝑏 ) ) ) ) |
| 61 | 18 47 60 | 3bitr3d | ⊢ ( 𝑟 = 𝑅 → ( [ ( Base ‘ 𝑟 ) / 𝑣 ] [ ( 0g ‘ 𝑟 ) / 𝑧 ] [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏 ) → 0 ≤ ( 𝑎 · 𝑏 ) ) ) ) |
| 62 | df-orng | ⊢ oRing = { 𝑟 ∈ ( Ring ∩ oGrp ) ∣ [ ( Base ‘ 𝑟 ) / 𝑣 ] [ ( 0g ‘ 𝑟 ) / 𝑧 ] [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) } | |
| 63 | 61 62 | elrab2 | ⊢ ( 𝑅 ∈ oRing ↔ ( 𝑅 ∈ ( Ring ∩ oGrp ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏 ) → 0 ≤ ( 𝑎 · 𝑏 ) ) ) ) |
| 64 | df-3an | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏 ) → 0 ≤ ( 𝑎 · 𝑏 ) ) ) ↔ ( ( 𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏 ) → 0 ≤ ( 𝑎 · 𝑏 ) ) ) ) | |
| 65 | 6 63 64 | 3bitr4i | ⊢ ( 𝑅 ∈ oRing ↔ ( 𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏 ) → 0 ≤ ( 𝑎 · 𝑏 ) ) ) ) |