This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define class of all ordered rings. An ordered ring is a ring with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-orng | ⊢ oRing = { 𝑟 ∈ ( Ring ∩ oGrp ) ∣ [ ( Base ‘ 𝑟 ) / 𝑣 ] [ ( 0g ‘ 𝑟 ) / 𝑧 ] [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | corng | ⊢ oRing | |
| 1 | vr | ⊢ 𝑟 | |
| 2 | crg | ⊢ Ring | |
| 3 | cogrp | ⊢ oGrp | |
| 4 | 2 3 | cin | ⊢ ( Ring ∩ oGrp ) |
| 5 | cbs | ⊢ Base | |
| 6 | 1 | cv | ⊢ 𝑟 |
| 7 | 6 5 | cfv | ⊢ ( Base ‘ 𝑟 ) |
| 8 | vv | ⊢ 𝑣 | |
| 9 | c0g | ⊢ 0g | |
| 10 | 6 9 | cfv | ⊢ ( 0g ‘ 𝑟 ) |
| 11 | vz | ⊢ 𝑧 | |
| 12 | cmulr | ⊢ .r | |
| 13 | 6 12 | cfv | ⊢ ( .r ‘ 𝑟 ) |
| 14 | vt | ⊢ 𝑡 | |
| 15 | cple | ⊢ le | |
| 16 | 6 15 | cfv | ⊢ ( le ‘ 𝑟 ) |
| 17 | vl | ⊢ 𝑙 | |
| 18 | va | ⊢ 𝑎 | |
| 19 | 8 | cv | ⊢ 𝑣 |
| 20 | vb | ⊢ 𝑏 | |
| 21 | 11 | cv | ⊢ 𝑧 |
| 22 | 17 | cv | ⊢ 𝑙 |
| 23 | 18 | cv | ⊢ 𝑎 |
| 24 | 21 23 22 | wbr | ⊢ 𝑧 𝑙 𝑎 |
| 25 | 20 | cv | ⊢ 𝑏 |
| 26 | 21 25 22 | wbr | ⊢ 𝑧 𝑙 𝑏 |
| 27 | 24 26 | wa | ⊢ ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) |
| 28 | 14 | cv | ⊢ 𝑡 |
| 29 | 23 25 28 | co | ⊢ ( 𝑎 𝑡 𝑏 ) |
| 30 | 21 29 22 | wbr | ⊢ 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) |
| 31 | 27 30 | wi | ⊢ ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) |
| 32 | 31 20 19 | wral | ⊢ ∀ 𝑏 ∈ 𝑣 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) |
| 33 | 32 18 19 | wral | ⊢ ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) |
| 34 | 33 17 16 | wsbc | ⊢ [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) |
| 35 | 34 14 13 | wsbc | ⊢ [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) |
| 36 | 35 11 10 | wsbc | ⊢ [ ( 0g ‘ 𝑟 ) / 𝑧 ] [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) |
| 37 | 36 8 7 | wsbc | ⊢ [ ( Base ‘ 𝑟 ) / 𝑣 ] [ ( 0g ‘ 𝑟 ) / 𝑧 ] [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) |
| 38 | 37 1 4 | crab | ⊢ { 𝑟 ∈ ( Ring ∩ oGrp ) ∣ [ ( Base ‘ 𝑟 ) / 𝑣 ] [ ( 0g ‘ 𝑟 ) / 𝑧 ] [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) } |
| 39 | 0 38 | wceq | ⊢ oRing = { 𝑟 ∈ ( Ring ∩ oGrp ) ∣ [ ( Base ‘ 𝑟 ) / 𝑣 ] [ ( 0g ‘ 𝑟 ) / 𝑧 ] [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) } |