This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is an orthoposet." (Contributed by NM, 20-Oct-2011) (Revised by NM, 14-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isopos.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| isopos.e | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | ||
| isopos.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | ||
| isopos.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| isopos.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | ||
| isopos.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| isopos.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| isopos.f | ⊢ 0 = ( 0. ‘ 𝐾 ) | ||
| isopos.u | ⊢ 1 = ( 1. ‘ 𝐾 ) | ||
| Assertion | isopos | ⊢ ( 𝐾 ∈ OP ↔ ( ( 𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( ⊥ ‘ 𝑥 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( ⊥ ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( ⊥ ‘ 𝑥 ) ) = 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isopos.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | isopos.e | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | |
| 3 | isopos.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | |
| 4 | isopos.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 5 | isopos.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | |
| 6 | isopos.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 7 | isopos.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 8 | isopos.f | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| 9 | isopos.u | ⊢ 1 = ( 1. ‘ 𝐾 ) | |
| 10 | fveq2 | ⊢ ( 𝑝 = 𝐾 → ( Base ‘ 𝑝 ) = ( Base ‘ 𝐾 ) ) | |
| 11 | 10 1 | eqtr4di | ⊢ ( 𝑝 = 𝐾 → ( Base ‘ 𝑝 ) = 𝐵 ) |
| 12 | fveq2 | ⊢ ( 𝑝 = 𝐾 → ( lub ‘ 𝑝 ) = ( lub ‘ 𝐾 ) ) | |
| 13 | 12 2 | eqtr4di | ⊢ ( 𝑝 = 𝐾 → ( lub ‘ 𝑝 ) = 𝑈 ) |
| 14 | 13 | dmeqd | ⊢ ( 𝑝 = 𝐾 → dom ( lub ‘ 𝑝 ) = dom 𝑈 ) |
| 15 | 11 14 | eleq12d | ⊢ ( 𝑝 = 𝐾 → ( ( Base ‘ 𝑝 ) ∈ dom ( lub ‘ 𝑝 ) ↔ 𝐵 ∈ dom 𝑈 ) ) |
| 16 | fveq2 | ⊢ ( 𝑝 = 𝐾 → ( glb ‘ 𝑝 ) = ( glb ‘ 𝐾 ) ) | |
| 17 | 16 3 | eqtr4di | ⊢ ( 𝑝 = 𝐾 → ( glb ‘ 𝑝 ) = 𝐺 ) |
| 18 | 17 | dmeqd | ⊢ ( 𝑝 = 𝐾 → dom ( glb ‘ 𝑝 ) = dom 𝐺 ) |
| 19 | 11 18 | eleq12d | ⊢ ( 𝑝 = 𝐾 → ( ( Base ‘ 𝑝 ) ∈ dom ( glb ‘ 𝑝 ) ↔ 𝐵 ∈ dom 𝐺 ) ) |
| 20 | 15 19 | anbi12d | ⊢ ( 𝑝 = 𝐾 → ( ( ( Base ‘ 𝑝 ) ∈ dom ( lub ‘ 𝑝 ) ∧ ( Base ‘ 𝑝 ) ∈ dom ( glb ‘ 𝑝 ) ) ↔ ( 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ) ) |
| 21 | fveq2 | ⊢ ( 𝑝 = 𝐾 → ( oc ‘ 𝑝 ) = ( oc ‘ 𝐾 ) ) | |
| 22 | 21 5 | eqtr4di | ⊢ ( 𝑝 = 𝐾 → ( oc ‘ 𝑝 ) = ⊥ ) |
| 23 | 22 | eqeq2d | ⊢ ( 𝑝 = 𝐾 → ( 𝑛 = ( oc ‘ 𝑝 ) ↔ 𝑛 = ⊥ ) ) |
| 24 | 11 | eleq2d | ⊢ ( 𝑝 = 𝐾 → ( ( 𝑛 ‘ 𝑥 ) ∈ ( Base ‘ 𝑝 ) ↔ ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 25 | fveq2 | ⊢ ( 𝑝 = 𝐾 → ( le ‘ 𝑝 ) = ( le ‘ 𝐾 ) ) | |
| 26 | 25 4 | eqtr4di | ⊢ ( 𝑝 = 𝐾 → ( le ‘ 𝑝 ) = ≤ ) |
| 27 | 26 | breqd | ⊢ ( 𝑝 = 𝐾 → ( 𝑥 ( le ‘ 𝑝 ) 𝑦 ↔ 𝑥 ≤ 𝑦 ) ) |
| 28 | 26 | breqd | ⊢ ( 𝑝 = 𝐾 → ( ( 𝑛 ‘ 𝑦 ) ( le ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ↔ ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) |
| 29 | 27 28 | imbi12d | ⊢ ( 𝑝 = 𝐾 → ( ( 𝑥 ( le ‘ 𝑝 ) 𝑦 → ( 𝑛 ‘ 𝑦 ) ( le ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) ↔ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ) |
| 30 | 24 29 | 3anbi13d | ⊢ ( 𝑝 = 𝐾 → ( ( ( 𝑛 ‘ 𝑥 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ( le ‘ 𝑝 ) 𝑦 → ( 𝑛 ‘ 𝑦 ) ( le ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) ) ↔ ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ) ) |
| 31 | fveq2 | ⊢ ( 𝑝 = 𝐾 → ( join ‘ 𝑝 ) = ( join ‘ 𝐾 ) ) | |
| 32 | 31 6 | eqtr4di | ⊢ ( 𝑝 = 𝐾 → ( join ‘ 𝑝 ) = ∨ ) |
| 33 | 32 | oveqd | ⊢ ( 𝑝 = 𝐾 → ( 𝑥 ( join ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) ) |
| 34 | fveq2 | ⊢ ( 𝑝 = 𝐾 → ( 1. ‘ 𝑝 ) = ( 1. ‘ 𝐾 ) ) | |
| 35 | 34 9 | eqtr4di | ⊢ ( 𝑝 = 𝐾 → ( 1. ‘ 𝑝 ) = 1 ) |
| 36 | 33 35 | eqeq12d | ⊢ ( 𝑝 = 𝐾 → ( ( 𝑥 ( join ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 1. ‘ 𝑝 ) ↔ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ) ) |
| 37 | fveq2 | ⊢ ( 𝑝 = 𝐾 → ( meet ‘ 𝑝 ) = ( meet ‘ 𝐾 ) ) | |
| 38 | 37 7 | eqtr4di | ⊢ ( 𝑝 = 𝐾 → ( meet ‘ 𝑝 ) = ∧ ) |
| 39 | 38 | oveqd | ⊢ ( 𝑝 = 𝐾 → ( 𝑥 ( meet ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) ) |
| 40 | fveq2 | ⊢ ( 𝑝 = 𝐾 → ( 0. ‘ 𝑝 ) = ( 0. ‘ 𝐾 ) ) | |
| 41 | 40 8 | eqtr4di | ⊢ ( 𝑝 = 𝐾 → ( 0. ‘ 𝑝 ) = 0 ) |
| 42 | 39 41 | eqeq12d | ⊢ ( 𝑝 = 𝐾 → ( ( 𝑥 ( meet ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 0. ‘ 𝑝 ) ↔ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ) |
| 43 | 30 36 42 | 3anbi123d | ⊢ ( 𝑝 = 𝐾 → ( ( ( ( 𝑛 ‘ 𝑥 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ( le ‘ 𝑝 ) 𝑦 → ( 𝑛 ‘ 𝑦 ) ( le ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ( join ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑥 ( meet ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 0. ‘ 𝑝 ) ) ↔ ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ) ) |
| 44 | 11 43 | raleqbidv | ⊢ ( 𝑝 = 𝐾 → ( ∀ 𝑦 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑛 ‘ 𝑥 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ( le ‘ 𝑝 ) 𝑦 → ( 𝑛 ‘ 𝑦 ) ( le ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ( join ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑥 ( meet ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 0. ‘ 𝑝 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ) ) |
| 45 | 11 44 | raleqbidv | ⊢ ( 𝑝 = 𝐾 → ( ∀ 𝑥 ∈ ( Base ‘ 𝑝 ) ∀ 𝑦 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑛 ‘ 𝑥 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ( le ‘ 𝑝 ) 𝑦 → ( 𝑛 ‘ 𝑦 ) ( le ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ( join ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑥 ( meet ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 0. ‘ 𝑝 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ) ) |
| 46 | 23 45 | anbi12d | ⊢ ( 𝑝 = 𝐾 → ( ( 𝑛 = ( oc ‘ 𝑝 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑝 ) ∀ 𝑦 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑛 ‘ 𝑥 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ( le ‘ 𝑝 ) 𝑦 → ( 𝑛 ‘ 𝑦 ) ( le ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ( join ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑥 ( meet ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 0. ‘ 𝑝 ) ) ) ↔ ( 𝑛 = ⊥ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ) ) ) |
| 47 | 46 | exbidv | ⊢ ( 𝑝 = 𝐾 → ( ∃ 𝑛 ( 𝑛 = ( oc ‘ 𝑝 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑝 ) ∀ 𝑦 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑛 ‘ 𝑥 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ( le ‘ 𝑝 ) 𝑦 → ( 𝑛 ‘ 𝑦 ) ( le ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ( join ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑥 ( meet ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 0. ‘ 𝑝 ) ) ) ↔ ∃ 𝑛 ( 𝑛 = ⊥ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ) ) ) |
| 48 | 20 47 | anbi12d | ⊢ ( 𝑝 = 𝐾 → ( ( ( ( Base ‘ 𝑝 ) ∈ dom ( lub ‘ 𝑝 ) ∧ ( Base ‘ 𝑝 ) ∈ dom ( glb ‘ 𝑝 ) ) ∧ ∃ 𝑛 ( 𝑛 = ( oc ‘ 𝑝 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑝 ) ∀ 𝑦 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑛 ‘ 𝑥 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ( le ‘ 𝑝 ) 𝑦 → ( 𝑛 ‘ 𝑦 ) ( le ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ( join ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑥 ( meet ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 0. ‘ 𝑝 ) ) ) ) ↔ ( ( 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ∧ ∃ 𝑛 ( 𝑛 = ⊥ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ) ) ) ) |
| 49 | df-oposet | ⊢ OP = { 𝑝 ∈ Poset ∣ ( ( ( Base ‘ 𝑝 ) ∈ dom ( lub ‘ 𝑝 ) ∧ ( Base ‘ 𝑝 ) ∈ dom ( glb ‘ 𝑝 ) ) ∧ ∃ 𝑛 ( 𝑛 = ( oc ‘ 𝑝 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑝 ) ∀ 𝑦 ∈ ( Base ‘ 𝑝 ) ( ( ( 𝑛 ‘ 𝑥 ) ∈ ( Base ‘ 𝑝 ) ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ( le ‘ 𝑝 ) 𝑦 → ( 𝑛 ‘ 𝑦 ) ( le ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ( join ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 1. ‘ 𝑝 ) ∧ ( 𝑥 ( meet ‘ 𝑝 ) ( 𝑛 ‘ 𝑥 ) ) = ( 0. ‘ 𝑝 ) ) ) ) } | |
| 50 | 48 49 | elrab2 | ⊢ ( 𝐾 ∈ OP ↔ ( 𝐾 ∈ Poset ∧ ( ( 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ∧ ∃ 𝑛 ( 𝑛 = ⊥ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ) ) ) ) |
| 51 | anass | ⊢ ( ( ( 𝐾 ∈ Poset ∧ ( 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ) ∧ ∃ 𝑛 ( 𝑛 = ⊥ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ) ) ↔ ( 𝐾 ∈ Poset ∧ ( ( 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ∧ ∃ 𝑛 ( 𝑛 = ⊥ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ) ) ) ) | |
| 52 | 3anass | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ↔ ( 𝐾 ∈ Poset ∧ ( 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ) ) | |
| 53 | 52 | bicomi | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ) ↔ ( 𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ) |
| 54 | 5 | fvexi | ⊢ ⊥ ∈ V |
| 55 | fveq1 | ⊢ ( 𝑛 = ⊥ → ( 𝑛 ‘ 𝑥 ) = ( ⊥ ‘ 𝑥 ) ) | |
| 56 | 55 | eleq1d | ⊢ ( 𝑛 = ⊥ → ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ↔ ( ⊥ ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 57 | id | ⊢ ( 𝑛 = ⊥ → 𝑛 = ⊥ ) | |
| 58 | 57 55 | fveq12d | ⊢ ( 𝑛 = ⊥ → ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) ) |
| 59 | 58 | eqeq1d | ⊢ ( 𝑛 = ⊥ → ( ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) ) |
| 60 | fveq1 | ⊢ ( 𝑛 = ⊥ → ( 𝑛 ‘ 𝑦 ) = ( ⊥ ‘ 𝑦 ) ) | |
| 61 | 60 55 | breq12d | ⊢ ( 𝑛 = ⊥ → ( ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ↔ ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ) ) |
| 62 | 61 | imbi2d | ⊢ ( 𝑛 = ⊥ → ( ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ↔ ( 𝑥 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ) ) ) |
| 63 | 56 59 62 | 3anbi123d | ⊢ ( 𝑛 = ⊥ → ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ↔ ( ( ⊥ ‘ 𝑥 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ) ) ) ) |
| 64 | 55 | oveq2d | ⊢ ( 𝑛 = ⊥ → ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = ( 𝑥 ∨ ( ⊥ ‘ 𝑥 ) ) ) |
| 65 | 64 | eqeq1d | ⊢ ( 𝑛 = ⊥ → ( ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ↔ ( 𝑥 ∨ ( ⊥ ‘ 𝑥 ) ) = 1 ) ) |
| 66 | 55 | oveq2d | ⊢ ( 𝑛 = ⊥ → ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = ( 𝑥 ∧ ( ⊥ ‘ 𝑥 ) ) ) |
| 67 | 66 | eqeq1d | ⊢ ( 𝑛 = ⊥ → ( ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ↔ ( 𝑥 ∧ ( ⊥ ‘ 𝑥 ) ) = 0 ) ) |
| 68 | 63 65 67 | 3anbi123d | ⊢ ( 𝑛 = ⊥ → ( ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ↔ ( ( ( ⊥ ‘ 𝑥 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( ⊥ ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( ⊥ ‘ 𝑥 ) ) = 0 ) ) ) |
| 69 | 68 | 2ralbidv | ⊢ ( 𝑛 = ⊥ → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( ⊥ ‘ 𝑥 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( ⊥ ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( ⊥ ‘ 𝑥 ) ) = 0 ) ) ) |
| 70 | 54 69 | ceqsexv | ⊢ ( ∃ 𝑛 ( 𝑛 = ⊥ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( ⊥ ‘ 𝑥 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( ⊥ ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( ⊥ ‘ 𝑥 ) ) = 0 ) ) |
| 71 | 53 70 | anbi12i | ⊢ ( ( ( 𝐾 ∈ Poset ∧ ( 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ) ∧ ∃ 𝑛 ( 𝑛 = ⊥ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( 𝑛 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝑛 ‘ ( 𝑛 ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( 𝑛 ‘ 𝑦 ) ≤ ( 𝑛 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( 𝑛 ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( 𝑛 ‘ 𝑥 ) ) = 0 ) ) ) ↔ ( ( 𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( ⊥ ‘ 𝑥 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( ⊥ ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( ⊥ ‘ 𝑥 ) ) = 0 ) ) ) |
| 72 | 50 51 71 | 3bitr2i | ⊢ ( 𝐾 ∈ OP ↔ ( ( 𝐾 ∈ Poset ∧ 𝐵 ∈ dom 𝑈 ∧ 𝐵 ∈ dom 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( ( ⊥ ‘ 𝑥 ) ∈ 𝐵 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ≤ 𝑦 → ( ⊥ ‘ 𝑦 ) ≤ ( ⊥ ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∨ ( ⊥ ‘ 𝑥 ) ) = 1 ∧ ( 𝑥 ∧ ( ⊥ ‘ 𝑥 ) ) = 0 ) ) ) |