This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is an orthoposet." (Contributed by NM, 20-Oct-2011) (Revised by NM, 14-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isopos.b | |- B = ( Base ` K ) |
|
| isopos.e | |- U = ( lub ` K ) |
||
| isopos.g | |- G = ( glb ` K ) |
||
| isopos.l | |- .<_ = ( le ` K ) |
||
| isopos.o | |- ._|_ = ( oc ` K ) |
||
| isopos.j | |- .\/ = ( join ` K ) |
||
| isopos.m | |- ./\ = ( meet ` K ) |
||
| isopos.f | |- .0. = ( 0. ` K ) |
||
| isopos.u | |- .1. = ( 1. ` K ) |
||
| Assertion | isopos | |- ( K e. OP <-> ( ( K e. Poset /\ B e. dom U /\ B e. dom G ) /\ A. x e. B A. y e. B ( ( ( ._|_ ` x ) e. B /\ ( ._|_ ` ( ._|_ ` x ) ) = x /\ ( x .<_ y -> ( ._|_ ` y ) .<_ ( ._|_ ` x ) ) ) /\ ( x .\/ ( ._|_ ` x ) ) = .1. /\ ( x ./\ ( ._|_ ` x ) ) = .0. ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isopos.b | |- B = ( Base ` K ) |
|
| 2 | isopos.e | |- U = ( lub ` K ) |
|
| 3 | isopos.g | |- G = ( glb ` K ) |
|
| 4 | isopos.l | |- .<_ = ( le ` K ) |
|
| 5 | isopos.o | |- ._|_ = ( oc ` K ) |
|
| 6 | isopos.j | |- .\/ = ( join ` K ) |
|
| 7 | isopos.m | |- ./\ = ( meet ` K ) |
|
| 8 | isopos.f | |- .0. = ( 0. ` K ) |
|
| 9 | isopos.u | |- .1. = ( 1. ` K ) |
|
| 10 | fveq2 | |- ( p = K -> ( Base ` p ) = ( Base ` K ) ) |
|
| 11 | 10 1 | eqtr4di | |- ( p = K -> ( Base ` p ) = B ) |
| 12 | fveq2 | |- ( p = K -> ( lub ` p ) = ( lub ` K ) ) |
|
| 13 | 12 2 | eqtr4di | |- ( p = K -> ( lub ` p ) = U ) |
| 14 | 13 | dmeqd | |- ( p = K -> dom ( lub ` p ) = dom U ) |
| 15 | 11 14 | eleq12d | |- ( p = K -> ( ( Base ` p ) e. dom ( lub ` p ) <-> B e. dom U ) ) |
| 16 | fveq2 | |- ( p = K -> ( glb ` p ) = ( glb ` K ) ) |
|
| 17 | 16 3 | eqtr4di | |- ( p = K -> ( glb ` p ) = G ) |
| 18 | 17 | dmeqd | |- ( p = K -> dom ( glb ` p ) = dom G ) |
| 19 | 11 18 | eleq12d | |- ( p = K -> ( ( Base ` p ) e. dom ( glb ` p ) <-> B e. dom G ) ) |
| 20 | 15 19 | anbi12d | |- ( p = K -> ( ( ( Base ` p ) e. dom ( lub ` p ) /\ ( Base ` p ) e. dom ( glb ` p ) ) <-> ( B e. dom U /\ B e. dom G ) ) ) |
| 21 | fveq2 | |- ( p = K -> ( oc ` p ) = ( oc ` K ) ) |
|
| 22 | 21 5 | eqtr4di | |- ( p = K -> ( oc ` p ) = ._|_ ) |
| 23 | 22 | eqeq2d | |- ( p = K -> ( n = ( oc ` p ) <-> n = ._|_ ) ) |
| 24 | 11 | eleq2d | |- ( p = K -> ( ( n ` x ) e. ( Base ` p ) <-> ( n ` x ) e. B ) ) |
| 25 | fveq2 | |- ( p = K -> ( le ` p ) = ( le ` K ) ) |
|
| 26 | 25 4 | eqtr4di | |- ( p = K -> ( le ` p ) = .<_ ) |
| 27 | 26 | breqd | |- ( p = K -> ( x ( le ` p ) y <-> x .<_ y ) ) |
| 28 | 26 | breqd | |- ( p = K -> ( ( n ` y ) ( le ` p ) ( n ` x ) <-> ( n ` y ) .<_ ( n ` x ) ) ) |
| 29 | 27 28 | imbi12d | |- ( p = K -> ( ( x ( le ` p ) y -> ( n ` y ) ( le ` p ) ( n ` x ) ) <-> ( x .<_ y -> ( n ` y ) .<_ ( n ` x ) ) ) ) |
| 30 | 24 29 | 3anbi13d | |- ( p = K -> ( ( ( n ` x ) e. ( Base ` p ) /\ ( n ` ( n ` x ) ) = x /\ ( x ( le ` p ) y -> ( n ` y ) ( le ` p ) ( n ` x ) ) ) <-> ( ( n ` x ) e. B /\ ( n ` ( n ` x ) ) = x /\ ( x .<_ y -> ( n ` y ) .<_ ( n ` x ) ) ) ) ) |
| 31 | fveq2 | |- ( p = K -> ( join ` p ) = ( join ` K ) ) |
|
| 32 | 31 6 | eqtr4di | |- ( p = K -> ( join ` p ) = .\/ ) |
| 33 | 32 | oveqd | |- ( p = K -> ( x ( join ` p ) ( n ` x ) ) = ( x .\/ ( n ` x ) ) ) |
| 34 | fveq2 | |- ( p = K -> ( 1. ` p ) = ( 1. ` K ) ) |
|
| 35 | 34 9 | eqtr4di | |- ( p = K -> ( 1. ` p ) = .1. ) |
| 36 | 33 35 | eqeq12d | |- ( p = K -> ( ( x ( join ` p ) ( n ` x ) ) = ( 1. ` p ) <-> ( x .\/ ( n ` x ) ) = .1. ) ) |
| 37 | fveq2 | |- ( p = K -> ( meet ` p ) = ( meet ` K ) ) |
|
| 38 | 37 7 | eqtr4di | |- ( p = K -> ( meet ` p ) = ./\ ) |
| 39 | 38 | oveqd | |- ( p = K -> ( x ( meet ` p ) ( n ` x ) ) = ( x ./\ ( n ` x ) ) ) |
| 40 | fveq2 | |- ( p = K -> ( 0. ` p ) = ( 0. ` K ) ) |
|
| 41 | 40 8 | eqtr4di | |- ( p = K -> ( 0. ` p ) = .0. ) |
| 42 | 39 41 | eqeq12d | |- ( p = K -> ( ( x ( meet ` p ) ( n ` x ) ) = ( 0. ` p ) <-> ( x ./\ ( n ` x ) ) = .0. ) ) |
| 43 | 30 36 42 | 3anbi123d | |- ( p = K -> ( ( ( ( n ` x ) e. ( Base ` p ) /\ ( n ` ( n ` x ) ) = x /\ ( x ( le ` p ) y -> ( n ` y ) ( le ` p ) ( n ` x ) ) ) /\ ( x ( join ` p ) ( n ` x ) ) = ( 1. ` p ) /\ ( x ( meet ` p ) ( n ` x ) ) = ( 0. ` p ) ) <-> ( ( ( n ` x ) e. B /\ ( n ` ( n ` x ) ) = x /\ ( x .<_ y -> ( n ` y ) .<_ ( n ` x ) ) ) /\ ( x .\/ ( n ` x ) ) = .1. /\ ( x ./\ ( n ` x ) ) = .0. ) ) ) |
| 44 | 11 43 | raleqbidv | |- ( p = K -> ( A. y e. ( Base ` p ) ( ( ( n ` x ) e. ( Base ` p ) /\ ( n ` ( n ` x ) ) = x /\ ( x ( le ` p ) y -> ( n ` y ) ( le ` p ) ( n ` x ) ) ) /\ ( x ( join ` p ) ( n ` x ) ) = ( 1. ` p ) /\ ( x ( meet ` p ) ( n ` x ) ) = ( 0. ` p ) ) <-> A. y e. B ( ( ( n ` x ) e. B /\ ( n ` ( n ` x ) ) = x /\ ( x .<_ y -> ( n ` y ) .<_ ( n ` x ) ) ) /\ ( x .\/ ( n ` x ) ) = .1. /\ ( x ./\ ( n ` x ) ) = .0. ) ) ) |
| 45 | 11 44 | raleqbidv | |- ( p = K -> ( A. x e. ( Base ` p ) A. y e. ( Base ` p ) ( ( ( n ` x ) e. ( Base ` p ) /\ ( n ` ( n ` x ) ) = x /\ ( x ( le ` p ) y -> ( n ` y ) ( le ` p ) ( n ` x ) ) ) /\ ( x ( join ` p ) ( n ` x ) ) = ( 1. ` p ) /\ ( x ( meet ` p ) ( n ` x ) ) = ( 0. ` p ) ) <-> A. x e. B A. y e. B ( ( ( n ` x ) e. B /\ ( n ` ( n ` x ) ) = x /\ ( x .<_ y -> ( n ` y ) .<_ ( n ` x ) ) ) /\ ( x .\/ ( n ` x ) ) = .1. /\ ( x ./\ ( n ` x ) ) = .0. ) ) ) |
| 46 | 23 45 | anbi12d | |- ( p = K -> ( ( n = ( oc ` p ) /\ A. x e. ( Base ` p ) A. y e. ( Base ` p ) ( ( ( n ` x ) e. ( Base ` p ) /\ ( n ` ( n ` x ) ) = x /\ ( x ( le ` p ) y -> ( n ` y ) ( le ` p ) ( n ` x ) ) ) /\ ( x ( join ` p ) ( n ` x ) ) = ( 1. ` p ) /\ ( x ( meet ` p ) ( n ` x ) ) = ( 0. ` p ) ) ) <-> ( n = ._|_ /\ A. x e. B A. y e. B ( ( ( n ` x ) e. B /\ ( n ` ( n ` x ) ) = x /\ ( x .<_ y -> ( n ` y ) .<_ ( n ` x ) ) ) /\ ( x .\/ ( n ` x ) ) = .1. /\ ( x ./\ ( n ` x ) ) = .0. ) ) ) ) |
| 47 | 46 | exbidv | |- ( p = K -> ( E. n ( n = ( oc ` p ) /\ A. x e. ( Base ` p ) A. y e. ( Base ` p ) ( ( ( n ` x ) e. ( Base ` p ) /\ ( n ` ( n ` x ) ) = x /\ ( x ( le ` p ) y -> ( n ` y ) ( le ` p ) ( n ` x ) ) ) /\ ( x ( join ` p ) ( n ` x ) ) = ( 1. ` p ) /\ ( x ( meet ` p ) ( n ` x ) ) = ( 0. ` p ) ) ) <-> E. n ( n = ._|_ /\ A. x e. B A. y e. B ( ( ( n ` x ) e. B /\ ( n ` ( n ` x ) ) = x /\ ( x .<_ y -> ( n ` y ) .<_ ( n ` x ) ) ) /\ ( x .\/ ( n ` x ) ) = .1. /\ ( x ./\ ( n ` x ) ) = .0. ) ) ) ) |
| 48 | 20 47 | anbi12d | |- ( p = K -> ( ( ( ( Base ` p ) e. dom ( lub ` p ) /\ ( Base ` p ) e. dom ( glb ` p ) ) /\ E. n ( n = ( oc ` p ) /\ A. x e. ( Base ` p ) A. y e. ( Base ` p ) ( ( ( n ` x ) e. ( Base ` p ) /\ ( n ` ( n ` x ) ) = x /\ ( x ( le ` p ) y -> ( n ` y ) ( le ` p ) ( n ` x ) ) ) /\ ( x ( join ` p ) ( n ` x ) ) = ( 1. ` p ) /\ ( x ( meet ` p ) ( n ` x ) ) = ( 0. ` p ) ) ) ) <-> ( ( B e. dom U /\ B e. dom G ) /\ E. n ( n = ._|_ /\ A. x e. B A. y e. B ( ( ( n ` x ) e. B /\ ( n ` ( n ` x ) ) = x /\ ( x .<_ y -> ( n ` y ) .<_ ( n ` x ) ) ) /\ ( x .\/ ( n ` x ) ) = .1. /\ ( x ./\ ( n ` x ) ) = .0. ) ) ) ) ) |
| 49 | df-oposet | |- OP = { p e. Poset | ( ( ( Base ` p ) e. dom ( lub ` p ) /\ ( Base ` p ) e. dom ( glb ` p ) ) /\ E. n ( n = ( oc ` p ) /\ A. x e. ( Base ` p ) A. y e. ( Base ` p ) ( ( ( n ` x ) e. ( Base ` p ) /\ ( n ` ( n ` x ) ) = x /\ ( x ( le ` p ) y -> ( n ` y ) ( le ` p ) ( n ` x ) ) ) /\ ( x ( join ` p ) ( n ` x ) ) = ( 1. ` p ) /\ ( x ( meet ` p ) ( n ` x ) ) = ( 0. ` p ) ) ) ) } |
|
| 50 | 48 49 | elrab2 | |- ( K e. OP <-> ( K e. Poset /\ ( ( B e. dom U /\ B e. dom G ) /\ E. n ( n = ._|_ /\ A. x e. B A. y e. B ( ( ( n ` x ) e. B /\ ( n ` ( n ` x ) ) = x /\ ( x .<_ y -> ( n ` y ) .<_ ( n ` x ) ) ) /\ ( x .\/ ( n ` x ) ) = .1. /\ ( x ./\ ( n ` x ) ) = .0. ) ) ) ) ) |
| 51 | anass | |- ( ( ( K e. Poset /\ ( B e. dom U /\ B e. dom G ) ) /\ E. n ( n = ._|_ /\ A. x e. B A. y e. B ( ( ( n ` x ) e. B /\ ( n ` ( n ` x ) ) = x /\ ( x .<_ y -> ( n ` y ) .<_ ( n ` x ) ) ) /\ ( x .\/ ( n ` x ) ) = .1. /\ ( x ./\ ( n ` x ) ) = .0. ) ) ) <-> ( K e. Poset /\ ( ( B e. dom U /\ B e. dom G ) /\ E. n ( n = ._|_ /\ A. x e. B A. y e. B ( ( ( n ` x ) e. B /\ ( n ` ( n ` x ) ) = x /\ ( x .<_ y -> ( n ` y ) .<_ ( n ` x ) ) ) /\ ( x .\/ ( n ` x ) ) = .1. /\ ( x ./\ ( n ` x ) ) = .0. ) ) ) ) ) |
|
| 52 | 3anass | |- ( ( K e. Poset /\ B e. dom U /\ B e. dom G ) <-> ( K e. Poset /\ ( B e. dom U /\ B e. dom G ) ) ) |
|
| 53 | 52 | bicomi | |- ( ( K e. Poset /\ ( B e. dom U /\ B e. dom G ) ) <-> ( K e. Poset /\ B e. dom U /\ B e. dom G ) ) |
| 54 | 5 | fvexi | |- ._|_ e. _V |
| 55 | fveq1 | |- ( n = ._|_ -> ( n ` x ) = ( ._|_ ` x ) ) |
|
| 56 | 55 | eleq1d | |- ( n = ._|_ -> ( ( n ` x ) e. B <-> ( ._|_ ` x ) e. B ) ) |
| 57 | id | |- ( n = ._|_ -> n = ._|_ ) |
|
| 58 | 57 55 | fveq12d | |- ( n = ._|_ -> ( n ` ( n ` x ) ) = ( ._|_ ` ( ._|_ ` x ) ) ) |
| 59 | 58 | eqeq1d | |- ( n = ._|_ -> ( ( n ` ( n ` x ) ) = x <-> ( ._|_ ` ( ._|_ ` x ) ) = x ) ) |
| 60 | fveq1 | |- ( n = ._|_ -> ( n ` y ) = ( ._|_ ` y ) ) |
|
| 61 | 60 55 | breq12d | |- ( n = ._|_ -> ( ( n ` y ) .<_ ( n ` x ) <-> ( ._|_ ` y ) .<_ ( ._|_ ` x ) ) ) |
| 62 | 61 | imbi2d | |- ( n = ._|_ -> ( ( x .<_ y -> ( n ` y ) .<_ ( n ` x ) ) <-> ( x .<_ y -> ( ._|_ ` y ) .<_ ( ._|_ ` x ) ) ) ) |
| 63 | 56 59 62 | 3anbi123d | |- ( n = ._|_ -> ( ( ( n ` x ) e. B /\ ( n ` ( n ` x ) ) = x /\ ( x .<_ y -> ( n ` y ) .<_ ( n ` x ) ) ) <-> ( ( ._|_ ` x ) e. B /\ ( ._|_ ` ( ._|_ ` x ) ) = x /\ ( x .<_ y -> ( ._|_ ` y ) .<_ ( ._|_ ` x ) ) ) ) ) |
| 64 | 55 | oveq2d | |- ( n = ._|_ -> ( x .\/ ( n ` x ) ) = ( x .\/ ( ._|_ ` x ) ) ) |
| 65 | 64 | eqeq1d | |- ( n = ._|_ -> ( ( x .\/ ( n ` x ) ) = .1. <-> ( x .\/ ( ._|_ ` x ) ) = .1. ) ) |
| 66 | 55 | oveq2d | |- ( n = ._|_ -> ( x ./\ ( n ` x ) ) = ( x ./\ ( ._|_ ` x ) ) ) |
| 67 | 66 | eqeq1d | |- ( n = ._|_ -> ( ( x ./\ ( n ` x ) ) = .0. <-> ( x ./\ ( ._|_ ` x ) ) = .0. ) ) |
| 68 | 63 65 67 | 3anbi123d | |- ( n = ._|_ -> ( ( ( ( n ` x ) e. B /\ ( n ` ( n ` x ) ) = x /\ ( x .<_ y -> ( n ` y ) .<_ ( n ` x ) ) ) /\ ( x .\/ ( n ` x ) ) = .1. /\ ( x ./\ ( n ` x ) ) = .0. ) <-> ( ( ( ._|_ ` x ) e. B /\ ( ._|_ ` ( ._|_ ` x ) ) = x /\ ( x .<_ y -> ( ._|_ ` y ) .<_ ( ._|_ ` x ) ) ) /\ ( x .\/ ( ._|_ ` x ) ) = .1. /\ ( x ./\ ( ._|_ ` x ) ) = .0. ) ) ) |
| 69 | 68 | 2ralbidv | |- ( n = ._|_ -> ( A. x e. B A. y e. B ( ( ( n ` x ) e. B /\ ( n ` ( n ` x ) ) = x /\ ( x .<_ y -> ( n ` y ) .<_ ( n ` x ) ) ) /\ ( x .\/ ( n ` x ) ) = .1. /\ ( x ./\ ( n ` x ) ) = .0. ) <-> A. x e. B A. y e. B ( ( ( ._|_ ` x ) e. B /\ ( ._|_ ` ( ._|_ ` x ) ) = x /\ ( x .<_ y -> ( ._|_ ` y ) .<_ ( ._|_ ` x ) ) ) /\ ( x .\/ ( ._|_ ` x ) ) = .1. /\ ( x ./\ ( ._|_ ` x ) ) = .0. ) ) ) |
| 70 | 54 69 | ceqsexv | |- ( E. n ( n = ._|_ /\ A. x e. B A. y e. B ( ( ( n ` x ) e. B /\ ( n ` ( n ` x ) ) = x /\ ( x .<_ y -> ( n ` y ) .<_ ( n ` x ) ) ) /\ ( x .\/ ( n ` x ) ) = .1. /\ ( x ./\ ( n ` x ) ) = .0. ) ) <-> A. x e. B A. y e. B ( ( ( ._|_ ` x ) e. B /\ ( ._|_ ` ( ._|_ ` x ) ) = x /\ ( x .<_ y -> ( ._|_ ` y ) .<_ ( ._|_ ` x ) ) ) /\ ( x .\/ ( ._|_ ` x ) ) = .1. /\ ( x ./\ ( ._|_ ` x ) ) = .0. ) ) |
| 71 | 53 70 | anbi12i | |- ( ( ( K e. Poset /\ ( B e. dom U /\ B e. dom G ) ) /\ E. n ( n = ._|_ /\ A. x e. B A. y e. B ( ( ( n ` x ) e. B /\ ( n ` ( n ` x ) ) = x /\ ( x .<_ y -> ( n ` y ) .<_ ( n ` x ) ) ) /\ ( x .\/ ( n ` x ) ) = .1. /\ ( x ./\ ( n ` x ) ) = .0. ) ) ) <-> ( ( K e. Poset /\ B e. dom U /\ B e. dom G ) /\ A. x e. B A. y e. B ( ( ( ._|_ ` x ) e. B /\ ( ._|_ ` ( ._|_ ` x ) ) = x /\ ( x .<_ y -> ( ._|_ ` y ) .<_ ( ._|_ ` x ) ) ) /\ ( x .\/ ( ._|_ ` x ) ) = .1. /\ ( x ./\ ( ._|_ ` x ) ) = .0. ) ) ) |
| 72 | 50 51 71 | 3bitr2i | |- ( K e. OP <-> ( ( K e. Poset /\ B e. dom U /\ B e. dom G ) /\ A. x e. B A. y e. B ( ( ( ._|_ ` x ) e. B /\ ( ._|_ ` ( ._|_ ` x ) ) = x /\ ( x .<_ y -> ( ._|_ ` y ) .<_ ( ._|_ ` x ) ) ) /\ ( x .\/ ( ._|_ ` x ) ) = .1. /\ ( x ./\ ( ._|_ ` x ) ) = .0. ) ) ) |