This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of an isomorphism composed with the isomorphism is the identity. (Contributed by AV, 10-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invisoinv.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| invisoinv.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | ||
| invisoinv.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | ||
| invisoinv.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| invisoinv.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| invisoinv.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| invisoinv.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) | ||
| invcoisoid.1 | ⊢ 1 = ( Id ‘ 𝐶 ) | ||
| isocoinvid.o | ⊢ ⚬ = ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) | ||
| Assertion | isocoinvid | ⊢ ( 𝜑 → ( 𝐹 ⚬ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ) = ( 1 ‘ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invisoinv.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | invisoinv.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | |
| 3 | invisoinv.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | |
| 4 | invisoinv.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 5 | invisoinv.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | invisoinv.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | invisoinv.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) | |
| 8 | invcoisoid.1 | ⊢ 1 = ( Id ‘ 𝐶 ) | |
| 9 | isocoinvid.o | ⊢ ⚬ = ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) | |
| 10 | 1 2 3 4 5 6 7 | invisoinvl | ⊢ ( 𝜑 → ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 𝑌 𝑁 𝑋 ) 𝐹 ) |
| 11 | eqid | ⊢ ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 ) | |
| 12 | 1 3 4 6 5 11 | isinv | ⊢ ( 𝜑 → ( ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 𝑌 𝑁 𝑋 ) 𝐹 ↔ ( ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ∧ 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ) ) ) |
| 13 | simpl | ⊢ ( ( ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ∧ 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ) → ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) | |
| 14 | 12 13 | biimtrdi | ⊢ ( 𝜑 → ( ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 𝑌 𝑁 𝑋 ) 𝐹 → ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) ) |
| 15 | 10 14 | mpd | ⊢ ( 𝜑 → ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) |
| 16 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 17 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 18 | 1 16 2 4 6 5 | isohom | ⊢ ( 𝜑 → ( 𝑌 𝐼 𝑋 ) ⊆ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
| 19 | 1 3 4 5 6 2 | invf | ⊢ ( 𝜑 → ( 𝑋 𝑁 𝑌 ) : ( 𝑋 𝐼 𝑌 ) ⟶ ( 𝑌 𝐼 𝑋 ) ) |
| 20 | 19 7 | ffvelcdmd | ⊢ ( 𝜑 → ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ∈ ( 𝑌 𝐼 𝑋 ) ) |
| 21 | 18 20 | sseldd | ⊢ ( 𝜑 → ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
| 22 | 1 16 2 4 5 6 | isohom | ⊢ ( 𝜑 → ( 𝑋 𝐼 𝑌 ) ⊆ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
| 23 | 22 7 | sseldd | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
| 24 | 1 16 17 8 11 4 6 5 21 23 | issect2 | ⊢ ( 𝜑 → ( ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ↔ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ) = ( 1 ‘ 𝑌 ) ) ) |
| 25 | 9 | a1i | ⊢ ( 𝜑 → ⚬ = ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ) |
| 26 | 25 | eqcomd | ⊢ ( 𝜑 → ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) = ⚬ ) |
| 27 | 26 | oveqd | ⊢ ( 𝜑 → ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ) = ( 𝐹 ⚬ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ) ) |
| 28 | 27 | eqeq1d | ⊢ ( 𝜑 → ( ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ) = ( 1 ‘ 𝑌 ) ↔ ( 𝐹 ⚬ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ) = ( 1 ‘ 𝑌 ) ) ) |
| 29 | 24 28 | bitrd | ⊢ ( 𝜑 → ( ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ↔ ( 𝐹 ⚬ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ) = ( 1 ‘ 𝑌 ) ) ) |
| 30 | 15 29 | mpbid | ⊢ ( 𝜑 → ( 𝐹 ⚬ ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ) = ( 1 ‘ 𝑌 ) ) |