This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of an isomorphism F (which is unique because of invf and is therefore denoted by ( ( X N Y )F ) , see also remark 3.12 in Adamek p. 28) is invers to the isomorphism. (Contributed by AV, 9-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invisoinv.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| invisoinv.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | ||
| invisoinv.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | ||
| invisoinv.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| invisoinv.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| invisoinv.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| invisoinv.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) | ||
| Assertion | invisoinvl | ⊢ ( 𝜑 → ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 𝑌 𝑁 𝑋 ) 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invisoinv.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | invisoinv.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | |
| 3 | invisoinv.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | |
| 4 | invisoinv.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 5 | invisoinv.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | invisoinv.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | invisoinv.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) | |
| 8 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 9 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 10 | 1 9 4 6 | idiso | ⊢ ( 𝜑 → ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ∈ ( 𝑌 ( Iso ‘ 𝐶 ) 𝑌 ) ) |
| 11 | 2 | a1i | ⊢ ( 𝜑 → 𝐼 = ( Iso ‘ 𝐶 ) ) |
| 12 | 11 | oveqd | ⊢ ( 𝜑 → ( 𝑌 𝐼 𝑌 ) = ( 𝑌 ( Iso ‘ 𝐶 ) 𝑌 ) ) |
| 13 | 10 12 | eleqtrrd | ⊢ ( 𝜑 → ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ∈ ( 𝑌 𝐼 𝑌 ) ) |
| 14 | 1 3 4 5 6 2 7 8 6 13 | invco | ⊢ ( 𝜑 → ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) ( 𝑋 𝑁 𝑌 ) ( ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 〈 𝑌 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) ( ( 𝑌 𝑁 𝑌 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) ) ) |
| 15 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 16 | 1 15 2 4 5 6 | isohom | ⊢ ( 𝜑 → ( 𝑋 𝐼 𝑌 ) ⊆ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
| 17 | 16 7 | sseldd | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
| 18 | 1 15 9 4 5 8 6 17 | catlid | ⊢ ( 𝜑 → ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) = 𝐹 ) |
| 19 | 3 | a1i | ⊢ ( 𝜑 → 𝑁 = ( Inv ‘ 𝐶 ) ) |
| 20 | 19 | oveqd | ⊢ ( 𝜑 → ( 𝑌 𝑁 𝑌 ) = ( 𝑌 ( Inv ‘ 𝐶 ) 𝑌 ) ) |
| 21 | 20 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑌 𝑁 𝑌 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) = ( ( 𝑌 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) ) |
| 22 | 1 9 4 6 | idinv | ⊢ ( 𝜑 → ( ( 𝑌 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) |
| 23 | 21 22 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑌 𝑁 𝑌 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) |
| 24 | 23 | oveq2d | ⊢ ( 𝜑 → ( ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 〈 𝑌 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) ( ( 𝑌 𝑁 𝑌 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) ) = ( ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 〈 𝑌 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) ) |
| 25 | 1 15 2 4 6 5 | isohom | ⊢ ( 𝜑 → ( 𝑌 𝐼 𝑋 ) ⊆ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
| 26 | 1 3 4 5 6 2 | invf | ⊢ ( 𝜑 → ( 𝑋 𝑁 𝑌 ) : ( 𝑋 𝐼 𝑌 ) ⟶ ( 𝑌 𝐼 𝑋 ) ) |
| 27 | 26 7 | ffvelcdmd | ⊢ ( 𝜑 → ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ∈ ( 𝑌 𝐼 𝑋 ) ) |
| 28 | 25 27 | sseldd | ⊢ ( 𝜑 → ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
| 29 | 1 15 9 4 6 8 5 28 | catrid | ⊢ ( 𝜑 → ( ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 〈 𝑌 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) = ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ) |
| 30 | 24 29 | eqtrd | ⊢ ( 𝜑 → ( ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 〈 𝑌 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) ( ( 𝑌 𝑁 𝑌 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) ) = ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ) |
| 31 | 14 18 30 | 3brtr3d | ⊢ ( 𝜑 → 𝐹 ( 𝑋 𝑁 𝑌 ) ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ) |
| 32 | 1 3 4 6 5 | invsym | ⊢ ( 𝜑 → ( ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 𝑌 𝑁 𝑋 ) 𝐹 ↔ 𝐹 ( 𝑋 𝑁 𝑌 ) ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ) ) |
| 33 | 31 32 | mpbird | ⊢ ( 𝜑 → ( ( 𝑋 𝑁 𝑌 ) ‘ 𝐹 ) ( 𝑌 𝑁 𝑋 ) 𝐹 ) |