This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Right cancellation of an inverse of an isomorphism. (Contributed by AV, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rcaninv.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| rcaninv.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | ||
| rcaninv.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| rcaninv.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| rcaninv.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| rcaninv.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| rcaninv.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑌 ( Iso ‘ 𝐶 ) 𝑋 ) ) | ||
| rcaninv.g | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑍 ) ) | ||
| rcaninv.h | ⊢ ( 𝜑 → 𝐻 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑍 ) ) | ||
| rcaninv.1 | ⊢ 𝑅 = ( ( 𝑌 𝑁 𝑋 ) ‘ 𝐹 ) | ||
| rcaninv.o | ⊢ ⚬ = ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) | ||
| Assertion | rcaninv | ⊢ ( 𝜑 → ( ( 𝐺 ⚬ 𝑅 ) = ( 𝐻 ⚬ 𝑅 ) → 𝐺 = 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcaninv.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | rcaninv.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | |
| 3 | rcaninv.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | rcaninv.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | rcaninv.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | rcaninv.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 7 | rcaninv.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑌 ( Iso ‘ 𝐶 ) 𝑋 ) ) | |
| 8 | rcaninv.g | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑍 ) ) | |
| 9 | rcaninv.h | ⊢ ( 𝜑 → 𝐻 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑍 ) ) | |
| 10 | rcaninv.1 | ⊢ 𝑅 = ( ( 𝑌 𝑁 𝑋 ) ‘ 𝐹 ) | |
| 11 | rcaninv.o | ⊢ ⚬ = ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) | |
| 12 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 13 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 14 | eqid | ⊢ ( Iso ‘ 𝐶 ) = ( Iso ‘ 𝐶 ) | |
| 15 | 1 12 14 3 5 4 | isohom | ⊢ ( 𝜑 → ( 𝑌 ( Iso ‘ 𝐶 ) 𝑋 ) ⊆ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
| 16 | 15 7 | sseldd | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
| 17 | 1 12 14 3 4 5 | isohom | ⊢ ( 𝜑 → ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ⊆ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
| 18 | 1 2 3 5 4 14 | invf | ⊢ ( 𝜑 → ( 𝑌 𝑁 𝑋 ) : ( 𝑌 ( Iso ‘ 𝐶 ) 𝑋 ) ⟶ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) |
| 19 | 18 7 | ffvelcdmd | ⊢ ( 𝜑 → ( ( 𝑌 𝑁 𝑋 ) ‘ 𝐹 ) ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) |
| 20 | 17 19 | sseldd | ⊢ ( 𝜑 → ( ( 𝑌 𝑁 𝑋 ) ‘ 𝐹 ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
| 21 | 1 12 13 3 5 4 5 16 20 6 8 | catass | ⊢ ( 𝜑 → ( ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) ( ( 𝑌 𝑁 𝑋 ) ‘ 𝐹 ) ) ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑍 ) 𝐹 ) = ( 𝐺 ( 〈 𝑌 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) ( ( ( 𝑌 𝑁 𝑋 ) ‘ 𝐹 ) ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) ) ) |
| 22 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 23 | eqid | ⊢ ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) = ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) | |
| 24 | 1 14 2 3 5 4 7 22 23 | invcoisoid | ⊢ ( 𝜑 → ( ( ( 𝑌 𝑁 𝑋 ) ‘ 𝐹 ) ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) |
| 25 | 24 | eqcomd | ⊢ ( 𝜑 → ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) = ( ( ( 𝑌 𝑁 𝑋 ) ‘ 𝐹 ) ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) ) |
| 26 | 25 | oveq2d | ⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑌 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) = ( 𝐺 ( 〈 𝑌 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) ( ( ( 𝑌 𝑁 𝑋 ) ‘ 𝐹 ) ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) ) ) |
| 27 | 1 12 22 3 5 13 6 8 | catrid | ⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑌 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) = 𝐺 ) |
| 28 | 21 26 27 | 3eqtr2rd | ⊢ ( 𝜑 → 𝐺 = ( ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) ( ( 𝑌 𝑁 𝑋 ) ‘ 𝐹 ) ) ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑍 ) 𝐹 ) ) |
| 29 | 28 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐺 ⚬ 𝑅 ) = ( 𝐻 ⚬ 𝑅 ) ) → 𝐺 = ( ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) ( ( 𝑌 𝑁 𝑋 ) ‘ 𝐹 ) ) ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑍 ) 𝐹 ) ) |
| 30 | 11 | eqcomi | ⊢ ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) = ⚬ |
| 31 | 30 | a1i | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) = ⚬ ) |
| 32 | eqidd | ⊢ ( 𝜑 → 𝐺 = 𝐺 ) | |
| 33 | 10 | eqcomi | ⊢ ( ( 𝑌 𝑁 𝑋 ) ‘ 𝐹 ) = 𝑅 |
| 34 | 33 | a1i | ⊢ ( 𝜑 → ( ( 𝑌 𝑁 𝑋 ) ‘ 𝐹 ) = 𝑅 ) |
| 35 | 31 32 34 | oveq123d | ⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) ( ( 𝑌 𝑁 𝑋 ) ‘ 𝐹 ) ) = ( 𝐺 ⚬ 𝑅 ) ) |
| 36 | 35 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐺 ⚬ 𝑅 ) = ( 𝐻 ⚬ 𝑅 ) ) → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) ( ( 𝑌 𝑁 𝑋 ) ‘ 𝐹 ) ) = ( 𝐺 ⚬ 𝑅 ) ) |
| 37 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝐺 ⚬ 𝑅 ) = ( 𝐻 ⚬ 𝑅 ) ) → ( 𝐺 ⚬ 𝑅 ) = ( 𝐻 ⚬ 𝑅 ) ) | |
| 38 | 36 37 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝐺 ⚬ 𝑅 ) = ( 𝐻 ⚬ 𝑅 ) ) → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) ( ( 𝑌 𝑁 𝑋 ) ‘ 𝐹 ) ) = ( 𝐻 ⚬ 𝑅 ) ) |
| 39 | 38 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝐺 ⚬ 𝑅 ) = ( 𝐻 ⚬ 𝑅 ) ) → ( ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) ( ( 𝑌 𝑁 𝑋 ) ‘ 𝐹 ) ) ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑍 ) 𝐹 ) = ( ( 𝐻 ⚬ 𝑅 ) ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑍 ) 𝐹 ) ) |
| 40 | 11 | oveqi | ⊢ ( 𝐻 ⚬ 𝑅 ) = ( 𝐻 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) 𝑅 ) |
| 41 | 40 | oveq1i | ⊢ ( ( 𝐻 ⚬ 𝑅 ) ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑍 ) 𝐹 ) = ( ( 𝐻 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) 𝑅 ) ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑍 ) 𝐹 ) |
| 42 | 41 | a1i | ⊢ ( 𝜑 → ( ( 𝐻 ⚬ 𝑅 ) ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑍 ) 𝐹 ) = ( ( 𝐻 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) 𝑅 ) ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑍 ) 𝐹 ) ) |
| 43 | 10 20 | eqeltrid | ⊢ ( 𝜑 → 𝑅 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
| 44 | 1 12 13 3 5 4 5 16 43 6 9 | catass | ⊢ ( 𝜑 → ( ( 𝐻 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) 𝑅 ) ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑍 ) 𝐹 ) = ( 𝐻 ( 〈 𝑌 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) ( 𝑅 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) ) ) |
| 45 | 10 | oveq1i | ⊢ ( 𝑅 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) = ( ( ( 𝑌 𝑁 𝑋 ) ‘ 𝐹 ) ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) |
| 46 | 45 | oveq2i | ⊢ ( 𝐻 ( 〈 𝑌 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) ( 𝑅 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) ) = ( 𝐻 ( 〈 𝑌 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) ( ( ( 𝑌 𝑁 𝑋 ) ‘ 𝐹 ) ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) ) |
| 47 | 46 | a1i | ⊢ ( 𝜑 → ( 𝐻 ( 〈 𝑌 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) ( 𝑅 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) ) = ( 𝐻 ( 〈 𝑌 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) ( ( ( 𝑌 𝑁 𝑋 ) ‘ 𝐹 ) ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) ) ) |
| 48 | 24 | oveq2d | ⊢ ( 𝜑 → ( 𝐻 ( 〈 𝑌 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) ( ( ( 𝑌 𝑁 𝑋 ) ‘ 𝐹 ) ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) ) = ( 𝐻 ( 〈 𝑌 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) ) |
| 49 | 44 47 48 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝐻 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) 𝑅 ) ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑍 ) 𝐹 ) = ( 𝐻 ( 〈 𝑌 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) ) |
| 50 | 1 12 22 3 5 13 6 9 | catrid | ⊢ ( 𝜑 → ( 𝐻 ( 〈 𝑌 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) = 𝐻 ) |
| 51 | 42 49 50 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝐻 ⚬ 𝑅 ) ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑍 ) 𝐹 ) = 𝐻 ) |
| 52 | 51 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐺 ⚬ 𝑅 ) = ( 𝐻 ⚬ 𝑅 ) ) → ( ( 𝐻 ⚬ 𝑅 ) ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑍 ) 𝐹 ) = 𝐻 ) |
| 53 | 29 39 52 | 3eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝐺 ⚬ 𝑅 ) = ( 𝐻 ⚬ 𝑅 ) ) → 𝐺 = 𝐻 ) |
| 54 | 53 | ex | ⊢ ( 𝜑 → ( ( 𝐺 ⚬ 𝑅 ) = ( 𝐻 ⚬ 𝑅 ) → 𝐺 = 𝐻 ) ) |