This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isnv . (Contributed by NM, 11-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isnvlem.1 | ⊢ 𝑋 = ran 𝐺 | |
| isnvlem.2 | ⊢ 𝑍 = ( GId ‘ 𝐺 ) | ||
| Assertion | isnvlem | ⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V ) → ( 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ NrmCVec ↔ ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ∧ 𝑁 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnvlem.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | isnvlem.2 | ⊢ 𝑍 = ( GId ‘ 𝐺 ) | |
| 3 | df-nv | ⊢ NrmCVec = { 〈 〈 𝑔 , 𝑠 〉 , 𝑛 〉 ∣ ( 〈 𝑔 , 𝑠 〉 ∈ CVecOLD ∧ 𝑛 : ran 𝑔 ⟶ ℝ ∧ ∀ 𝑥 ∈ ran 𝑔 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ran 𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) } | |
| 4 | 3 | eleq2i | ⊢ ( 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ NrmCVec ↔ 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ { 〈 〈 𝑔 , 𝑠 〉 , 𝑛 〉 ∣ ( 〈 𝑔 , 𝑠 〉 ∈ CVecOLD ∧ 𝑛 : ran 𝑔 ⟶ ℝ ∧ ∀ 𝑥 ∈ ran 𝑔 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ran 𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) } ) |
| 5 | opeq1 | ⊢ ( 𝑔 = 𝐺 → 〈 𝑔 , 𝑠 〉 = 〈 𝐺 , 𝑠 〉 ) | |
| 6 | 5 | eleq1d | ⊢ ( 𝑔 = 𝐺 → ( 〈 𝑔 , 𝑠 〉 ∈ CVecOLD ↔ 〈 𝐺 , 𝑠 〉 ∈ CVecOLD ) ) |
| 7 | rneq | ⊢ ( 𝑔 = 𝐺 → ran 𝑔 = ran 𝐺 ) | |
| 8 | 7 1 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ran 𝑔 = 𝑋 ) |
| 9 | 8 | feq2d | ⊢ ( 𝑔 = 𝐺 → ( 𝑛 : ran 𝑔 ⟶ ℝ ↔ 𝑛 : 𝑋 ⟶ ℝ ) ) |
| 10 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( GId ‘ 𝑔 ) = ( GId ‘ 𝐺 ) ) | |
| 11 | 10 2 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( GId ‘ 𝑔 ) = 𝑍 ) |
| 12 | 11 | eqeq2d | ⊢ ( 𝑔 = 𝐺 → ( 𝑥 = ( GId ‘ 𝑔 ) ↔ 𝑥 = 𝑍 ) ) |
| 13 | 12 | imbi2d | ⊢ ( 𝑔 = 𝐺 → ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝑔 ) ) ↔ ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ) ) |
| 14 | oveq | ⊢ ( 𝑔 = 𝐺 → ( 𝑥 𝑔 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) | |
| 15 | 14 | fveq2d | ⊢ ( 𝑔 = 𝐺 → ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) = ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ) |
| 16 | 15 | breq1d | ⊢ ( 𝑔 = 𝐺 → ( ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ↔ ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) |
| 17 | 8 16 | raleqbidv | ⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑦 ∈ ran 𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) |
| 18 | 13 17 | 3anbi13d | ⊢ ( 𝑔 = 𝐺 → ( ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ran 𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ↔ ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) ) |
| 19 | 8 18 | raleqbidv | ⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑥 ∈ ran 𝑔 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ran 𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) ) |
| 20 | 6 9 19 | 3anbi123d | ⊢ ( 𝑔 = 𝐺 → ( ( 〈 𝑔 , 𝑠 〉 ∈ CVecOLD ∧ 𝑛 : ran 𝑔 ⟶ ℝ ∧ ∀ 𝑥 ∈ ran 𝑔 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ran 𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) ↔ ( 〈 𝐺 , 𝑠 〉 ∈ CVecOLD ∧ 𝑛 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) ) ) |
| 21 | opeq2 | ⊢ ( 𝑠 = 𝑆 → 〈 𝐺 , 𝑠 〉 = 〈 𝐺 , 𝑆 〉 ) | |
| 22 | 21 | eleq1d | ⊢ ( 𝑠 = 𝑆 → ( 〈 𝐺 , 𝑠 〉 ∈ CVecOLD ↔ 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ) ) |
| 23 | oveq | ⊢ ( 𝑠 = 𝑆 → ( 𝑦 𝑠 𝑥 ) = ( 𝑦 𝑆 𝑥 ) ) | |
| 24 | 23 | fveqeq2d | ⊢ ( 𝑠 = 𝑆 → ( ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ↔ ( 𝑛 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ) ) |
| 25 | 24 | ralbidv | ⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ↔ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ) ) |
| 26 | 25 | 3anbi2d | ⊢ ( 𝑠 = 𝑆 → ( ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ↔ ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) ) |
| 27 | 26 | ralbidv | ⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) ) |
| 28 | 22 27 | 3anbi13d | ⊢ ( 𝑠 = 𝑆 → ( ( 〈 𝐺 , 𝑠 〉 ∈ CVecOLD ∧ 𝑛 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) ↔ ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ∧ 𝑛 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) ) ) |
| 29 | feq1 | ⊢ ( 𝑛 = 𝑁 → ( 𝑛 : 𝑋 ⟶ ℝ ↔ 𝑁 : 𝑋 ⟶ ℝ ) ) | |
| 30 | fveq1 | ⊢ ( 𝑛 = 𝑁 → ( 𝑛 ‘ 𝑥 ) = ( 𝑁 ‘ 𝑥 ) ) | |
| 31 | 30 | eqeq1d | ⊢ ( 𝑛 = 𝑁 → ( ( 𝑛 ‘ 𝑥 ) = 0 ↔ ( 𝑁 ‘ 𝑥 ) = 0 ) ) |
| 32 | 31 | imbi1d | ⊢ ( 𝑛 = 𝑁 → ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ↔ ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ) ) |
| 33 | fveq1 | ⊢ ( 𝑛 = 𝑁 → ( 𝑛 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) ) | |
| 34 | 30 | oveq2d | ⊢ ( 𝑛 = 𝑁 → ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ) |
| 35 | 33 34 | eqeq12d | ⊢ ( 𝑛 = 𝑁 → ( ( 𝑛 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ↔ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ) ) |
| 36 | 35 | ralbidv | ⊢ ( 𝑛 = 𝑁 → ( ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ↔ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ) ) |
| 37 | fveq1 | ⊢ ( 𝑛 = 𝑁 → ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) = ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ) | |
| 38 | fveq1 | ⊢ ( 𝑛 = 𝑁 → ( 𝑛 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) | |
| 39 | 30 38 | oveq12d | ⊢ ( 𝑛 = 𝑁 → ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) = ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) |
| 40 | 37 39 | breq12d | ⊢ ( 𝑛 = 𝑁 → ( ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ↔ ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 41 | 40 | ralbidv | ⊢ ( 𝑛 = 𝑁 → ( ∀ 𝑦 ∈ 𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 42 | 32 36 41 | 3anbi123d | ⊢ ( 𝑛 = 𝑁 → ( ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ↔ ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
| 43 | 42 | ralbidv | ⊢ ( 𝑛 = 𝑁 → ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
| 44 | 29 43 | 3anbi23d | ⊢ ( 𝑛 = 𝑁 → ( ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ∧ 𝑛 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑛 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) ↔ ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ∧ 𝑁 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ) |
| 45 | 20 28 44 | eloprabg | ⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V ) → ( 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ { 〈 〈 𝑔 , 𝑠 〉 , 𝑛 〉 ∣ ( 〈 𝑔 , 𝑠 〉 ∈ CVecOLD ∧ 𝑛 : ran 𝑔 ⟶ ℝ ∧ ∀ 𝑥 ∈ ran 𝑔 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ran 𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) } ↔ ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ∧ 𝑁 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ) |
| 46 | 4 45 | bitrid | ⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V ) → ( 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ NrmCVec ↔ ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ∧ 𝑁 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ) |