This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of all normed complex vector spaces. (Contributed by NM, 11-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-nv | ⊢ NrmCVec = { 〈 〈 𝑔 , 𝑠 〉 , 𝑛 〉 ∣ ( 〈 𝑔 , 𝑠 〉 ∈ CVecOLD ∧ 𝑛 : ran 𝑔 ⟶ ℝ ∧ ∀ 𝑥 ∈ ran 𝑔 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ran 𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cnv | ⊢ NrmCVec | |
| 1 | vg | ⊢ 𝑔 | |
| 2 | vs | ⊢ 𝑠 | |
| 3 | vn | ⊢ 𝑛 | |
| 4 | 1 | cv | ⊢ 𝑔 |
| 5 | 2 | cv | ⊢ 𝑠 |
| 6 | 4 5 | cop | ⊢ 〈 𝑔 , 𝑠 〉 |
| 7 | cvc | ⊢ CVecOLD | |
| 8 | 6 7 | wcel | ⊢ 〈 𝑔 , 𝑠 〉 ∈ CVecOLD |
| 9 | 3 | cv | ⊢ 𝑛 |
| 10 | 4 | crn | ⊢ ran 𝑔 |
| 11 | cr | ⊢ ℝ | |
| 12 | 10 11 9 | wf | ⊢ 𝑛 : ran 𝑔 ⟶ ℝ |
| 13 | vx | ⊢ 𝑥 | |
| 14 | 13 | cv | ⊢ 𝑥 |
| 15 | 14 9 | cfv | ⊢ ( 𝑛 ‘ 𝑥 ) |
| 16 | cc0 | ⊢ 0 | |
| 17 | 15 16 | wceq | ⊢ ( 𝑛 ‘ 𝑥 ) = 0 |
| 18 | cgi | ⊢ GId | |
| 19 | 4 18 | cfv | ⊢ ( GId ‘ 𝑔 ) |
| 20 | 14 19 | wceq | ⊢ 𝑥 = ( GId ‘ 𝑔 ) |
| 21 | 17 20 | wi | ⊢ ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝑔 ) ) |
| 22 | vy | ⊢ 𝑦 | |
| 23 | cc | ⊢ ℂ | |
| 24 | 22 | cv | ⊢ 𝑦 |
| 25 | 24 14 5 | co | ⊢ ( 𝑦 𝑠 𝑥 ) |
| 26 | 25 9 | cfv | ⊢ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) |
| 27 | cabs | ⊢ abs | |
| 28 | 24 27 | cfv | ⊢ ( abs ‘ 𝑦 ) |
| 29 | cmul | ⊢ · | |
| 30 | 28 15 29 | co | ⊢ ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) |
| 31 | 26 30 | wceq | ⊢ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) |
| 32 | 31 22 23 | wral | ⊢ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) |
| 33 | 14 24 4 | co | ⊢ ( 𝑥 𝑔 𝑦 ) |
| 34 | 33 9 | cfv | ⊢ ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) |
| 35 | cle | ⊢ ≤ | |
| 36 | caddc | ⊢ + | |
| 37 | 24 9 | cfv | ⊢ ( 𝑛 ‘ 𝑦 ) |
| 38 | 15 37 36 | co | ⊢ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) |
| 39 | 34 38 35 | wbr | ⊢ ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) |
| 40 | 39 22 10 | wral | ⊢ ∀ 𝑦 ∈ ran 𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) |
| 41 | 21 32 40 | w3a | ⊢ ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ran 𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) |
| 42 | 41 13 10 | wral | ⊢ ∀ 𝑥 ∈ ran 𝑔 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ran 𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) |
| 43 | 8 12 42 | w3a | ⊢ ( 〈 𝑔 , 𝑠 〉 ∈ CVecOLD ∧ 𝑛 : ran 𝑔 ⟶ ℝ ∧ ∀ 𝑥 ∈ ran 𝑔 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ran 𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) |
| 44 | 43 1 2 3 | coprab | ⊢ { 〈 〈 𝑔 , 𝑠 〉 , 𝑛 〉 ∣ ( 〈 𝑔 , 𝑠 〉 ∈ CVecOLD ∧ 𝑛 : ran 𝑔 ⟶ ℝ ∧ ∀ 𝑥 ∈ ran 𝑔 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ran 𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) } |
| 45 | 0 44 | wceq | ⊢ NrmCVec = { 〈 〈 𝑔 , 𝑠 〉 , 𝑛 〉 ∣ ( 〈 𝑔 , 𝑠 〉 ∈ CVecOLD ∧ 𝑛 : ran 𝑔 ⟶ ℝ ∧ ∀ 𝑥 ∈ ran 𝑔 ( ( ( 𝑛 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝑔 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑛 ‘ ( 𝑦 𝑠 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑛 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ran 𝑔 ( 𝑛 ‘ ( 𝑥 𝑔 𝑦 ) ) ≤ ( ( 𝑛 ‘ 𝑥 ) + ( 𝑛 ‘ 𝑦 ) ) ) ) } |