This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The components of a normed complex vector space are sets. (Contributed by NM, 5-Jun-2008) (Revised by Mario Carneiro, 1-May-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nvex | ⊢ ( 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ NrmCVec → ( 𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvvcop | ⊢ ( 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ NrmCVec → 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ) | |
| 2 | vcex | ⊢ ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD → ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) ) | |
| 3 | 1 2 | syl | ⊢ ( 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ NrmCVec → ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) ) |
| 4 | nvss | ⊢ NrmCVec ⊆ ( CVecOLD × V ) | |
| 5 | 4 | sseli | ⊢ ( 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ NrmCVec → 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ ( CVecOLD × V ) ) |
| 6 | opelxp2 | ⊢ ( 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ ( CVecOLD × V ) → 𝑁 ∈ V ) | |
| 7 | 5 6 | syl | ⊢ ( 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ NrmCVec → 𝑁 ∈ V ) |
| 8 | df-3an | ⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V ) ↔ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) ∧ 𝑁 ∈ V ) ) | |
| 9 | 3 7 8 | sylanbrc | ⊢ ( 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ NrmCVec → ( 𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V ) ) |